Country
Full text data for US,EP,CN
Type
Legal Validity
Legal Status
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC(Section)
IPC(Class)
IPC(Subclass)
IPC(Group)
IPC(Subgroup)
Agent
Agency
Claims Number
Figures Number
Citation Number of Times
Assignee Number
No. Publication Number Title Publication/Patent Number Publication/Patent Number Publication Date Publication Date
Application Number Application Number Filing Date Filing Date
Inventor Inventor Assignee Assignee IPC IPC
1 EP3602126A1
METHOD AND APPARATUS FOR SCANNING A SOLID ANGLE
Publication/Patent Number: EP3602126A1 Publication Date: 2020-02-05 Application Number: 18712568.7 Filing Date: 2018-03-19 Inventor: Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S17/89
2 EP3635437A1
OPERATING METHOD AND CONTROL UNIT FOR A LIDAR SYSTEM, LIDAR SYSTEM, AND WORK MACHINE
Publication/Patent Number: EP3635437A1 Publication Date: 2020-04-15 Application Number: 18723818.3 Filing Date: 2018-05-09 Inventor: Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S17/10
3 US2020018859A1
METHOD AND DEVICE FOR SCANNING A SOLID ANGLE
Publication/Patent Number: US2020018859A1 Publication Date: 2020-01-16 Application Number: 16/495,271 Filing Date: 2018-03-19 Inventor: Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S17/89 Abstract: A method for scanning a scan angle, in which at least one electromagnetic beam is generated, the at least one electromagnetic beam is deflected along the scan angle, and the at least one electromagnetic beam, reflected at an object, is received and detected, wherein after at least one first electromagnetic beam, at least one second electromagnetic beam is generated and the second electromagnetic beam is generated with a lower energy than the first electromagnetic beam. A LIDAR device is also disclosed.
4 US202018859A1
METHOD AND DEVICE FOR SCANNING A SOLID ANGLE
Publication/Patent Number: US202018859A1 Publication Date: 2020-01-16 Application Number: 20/181,649 Filing Date: 2018-03-19 Inventor: Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S17/89 Abstract: A method for scanning a scan angle, in which at least one electromagnetic beam is generated, the at least one electromagnetic beam is deflected along the scan angle, and the at least one electromagnetic beam, reflected at an object, is received and detected, wherein after at least one first electromagnetic beam, at least one second electromagnetic beam is generated and the second electromagnetic beam is generated with a lower energy than the first electromagnetic beam. A LIDAR device is also disclosed.
5 US2020304118A1
FIELD-EFFECT TRANSISTOR ARRANGEMENT AND METHOD FOR SETTING A DRAIN CURRENT OF A FIELD-EFFECT TRANSISTOR
Publication/Patent Number: US2020304118A1 Publication Date: 2020-09-24 Application Number: 16/769,406 Filing Date: 2018-10-23 Inventor: Tretter, Gregor   Schnitzer reiner   Schwarzenberger, Thomas   Assignee: Robert Bosch GmbH   IPC: H03K17/687 Abstract: A field-effect transistor system is provided that comprises a field-effect transistor having a back-gate terminal that can be adjusted by a back-gate voltage, a gate-source voltage and a drain-source voltage additionally being present at the field-effect transistor, and a drain current flowing through the field-effect transistor. In addition, the field-effect transistor system includes a control unit connected to the back-gate terminal, which unit is set up to set the drain current flowing through the field-effect transistor to a setpoint current via a controlling of the back-gate voltage at the back-gate terminal, the controlling of the back-gate voltage taking place as a function of at least the gate-source voltage. In addition, a method is provided for setting a drain current of a field-effect transistor.
6 US2020142061A1
METHOD AND DEVICE FOR DETECTING OBJECTS, AND LIDAR SYSTEM
Publication/Patent Number: US2020142061A1 Publication Date: 2020-05-07 Application Number: 16/613,882 Filing Date: 2018-05-16 Inventor: Schultz, Ingmar   Schnitzer reiner   Has, Remigius   Spiessberger, Stefan   Assignee: Robert Bosch GmbH   IPC: G01S17/04 Abstract: A method for detecting objects using a LIDAR system. The method includes emitting a first light beam scanning in a scanning direction in an emission direction at a first instant, allocating a first propagation time between the first transmission instant and a first receiving instant of a first reflection of the first light beam to the emission direction, emitting in the emission direction, an angle-resolved, further light beam scanning in the scanning direction and angularly offset from the first light beam, at a second transmission instant following the first emission instant, allocating a second propagation time between the second transmission instant and a second receiving instant of a second reflection of the second light beam to the emission direction, and evaluating hits using the propagation times allocated to the emission direction.
7 EP3607348A1
LIDAR DEVICE AND METHOD FOR SCANNING A SCANNING ANGLE AND FOR EVALUATING A DETECTOR
Publication/Patent Number: EP3607348A1 Publication Date: 2020-02-12 Application Number: 18713935.7 Filing Date: 2018-03-28 Inventor: Fink, Franziska Felicitas   Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S17/08
8 EP3500924B1
QUANTUM RANDOM NUMBER GENERATOR AND METHOD FOR PRODUCING A RANDOM NUMBER BY MEANS OF A QUANTUM RANDOM NUMBER GENERATOR
Publication/Patent Number: EP3500924B1 Publication Date: 2020-09-09 Application Number: 17751322.3 Filing Date: 2017-07-28 Inventor: Herrmann, Ingo   Schnitzer reiner   Krayl, Oliver   Strohm, Thomas   Assignee: Robert Bosch GmbH   IPC: G06F7/58
9 EP3721550A1
FIELD-EFFECT TRANSISTOR ARRANGEMENT AND METHOD FOR SETTING A DRAIN CURRENT OF A FIELD-EFFECT TRANSISTOR
Publication/Patent Number: EP3721550A1 Publication Date: 2020-10-14 Application Number: 18795425.0 Filing Date: 2018-10-23 Inventor: Schnitzer reiner   Schwarzenberger, Thomas   Tretter, Gregor   Assignee: Robert Bosch GmbH   IPC: H03F1/02
10 US2020209360A1
METHOD AND DEVICE FOR SCANNING A SOLID ANGLE
Publication/Patent Number: US2020209360A1 Publication Date: 2020-07-02 Application Number: 16/616,188 Filing Date: 2018-05-22 Inventor: Holleczek, Annemarie   Baier, Matthias   Schnitzer reiner   Has, Remigius   Bogatscher, Siegwart   Assignee: Robert Bosch GmbH   IPC: G01S7/481 Abstract: A method for scanning solid angles is provided using at least two electromagnetic beams, at least one electromagnetic beam being generated that is subsequently deflected along a horizontal angle and/or along a vertical angle with the aid of a rotatable mirror; the solid angles being scanned using the at least one electromagnetic beam; and at least one reflected electromagnetic beam being received, after being reflected off an object, by a receiving optics that is pivotable along the horizontal angle synchronously with the mirror. Furthermore, a LIDAR device for carrying out the method is provided.
11 EP3631497A1
METHOD AND DEVICE FOR SCANNING A SOLID ANGLE
Publication/Patent Number: EP3631497A1 Publication Date: 2020-04-08 Application Number: 18726454.4 Filing Date: 2018-05-22 Inventor: Bogatscher, Siegwart   Holleczek, Annemarie   Schnitzer reiner   Baier, Matthias   Has, Remigius   Assignee: Robert Bosch GmbH   IPC: G01S7/481
12 US10651515B2
Battery sensor data transmission unit and a method for transmitting battery sensor data
Publication/Patent Number: US10651515B2 Publication Date: 2020-05-12 Application Number: 14/379,115 Filing Date: 2013-01-23 Inventor: Henrici, Fabian   Wenzler, Axel   Schiemann, Werner   Schnitzer reiner   Elbracht, Berthold   Assignee: ROBERT BOSCH GMBH   IPC: H01M10/42 Abstract: A battery sensor data transmission unit is described as including a data transmission unit, which is designed to output a sensor signal, which represents a physical variable in or at the battery cell to an evaluation device, using a battery housing wall and/or a wall of a battery cell as the transmission medium.
13 US2019277969A1
TIME-TO-DIGITAL CONVERTER, LIDAR SYSTEM AND DEVICE
Publication/Patent Number: US2019277969A1 Publication Date: 2019-09-12 Application Number: 16/349,131 Filing Date: 2017-10-30 Inventor: Schnitzer reiner   Adams, Rene   Assignee: Robert Bosch GmbH   IPC: G01S17/10 Abstract: A time-to-digital converter includes a self-calibrating, n-stage chain of a number n of gate delay elements connected in parallel and series between a clock signal line for supplying a clock signal and a stop signal line for supplying a stop signal; and a charge-pump and phase-detector unit for the feedback control of the gate delay elements, having a first input as a controlled-variable input, a second input as a reference-variable input, and an output as a correcting-variable output. The clock signal line is connected to the first input of the charge-pump and phase-detector unit, a push-pull line for supplying a push-pull signal is connected to the second input, and, for feedback, the gate delay elements are connected to the output of the charge-pump and phase-detector unit.
14 EP3538957A1
TIME-TO-DIGITAL CONVERTER, LIDAR SYSTEM AND DEVICE
Publication/Patent Number: EP3538957A1 Publication Date: 2019-09-18 Application Number: 17792054.3 Filing Date: 2017-10-30 Inventor: Schnitzer reiner   Adams, Rene   Assignee: Robert Bosch GmbH   IPC: G04F10/00
15 WO2019121437A1
MULTI-PULSE LIDAR SYSTEM FOR MULTI-DIMENSIONAL DETECTION OF OBJECTS
Publication/Patent Number: WO2019121437A1 Publication Date: 2019-06-27 Application Number: 2018085099 Filing Date: 2018-12-17 Inventor: Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S7/486 Abstract: The invention relates to a multi-pulse lidar system (100) for detecting objects (400) in a monitoring region (300), comprising: a transmitting device (110) with at least one laser source (111) for generating a transmission laser beam (210) from a temporal sequence of individual laser pulses which each illuminate a solid angle (310) delimited within part of the monitoring region (300) and sample within at least at one sampling point; a receiving device (140) with a detection face (141) comprising a linear or matrix-like subdetector arrangement (143) formed from a plurality of subdetectors (142n) arranged adjacently in a first direction of extent for receiving the transmission laser beam (210) reflected and/or scattered at objects (400) in the monitoring region (300) of the multi-pulse lidar system (100) in the form of a received laser beam (220), the receiving device (140) imaging a sampling point detected by the transmission laser beam (210) onto the detection face (141) in the form of an image point; a scanning device (120) for generating a scanning motion (122) of the transmission laser beam (210) in a scanning direction (123) to provide a successive sampling of the entire monitoring region (300) along a plurality of sampling points arranged in succession in the scanning direction (123), the scanning motion (122) of the transmission laser beam (210) being designed, in the case of individual laser pulses following on from one another chronologically, to image the image points onto the detection face, in each case in a manner shifted along the linear or matrix-like subdetector arrangement (143); and a control device (130) for determining distance information of the sampling points on the basis of transit times of the individual laser pulses, wherein the control device (130) groups subdetectors (142n), which are detected from an image point currently imaged on the detection face (141), to form a macro pixel associated individually with the corresponding image point, for common evaluation. The invention also relates to a measurement sequence having three individual laser pulses emitted in succession and their corresponding detection regions (310) .
16 DE102017223102A1
Multipuls-Lidarsystem zur mehrdimensionalen Erfassung von Objekten
Publication/Patent Number: DE102017223102A1 Publication Date: 2019-06-19 Application Number: 102017223102 Filing Date: 2017-12-18 Inventor: Schnitzer reiner   Hipp, Tobias   Assignee: Robert Bosch GmbH   IPC: G01S17/10 Abstract: Es wird ein Multipuls-Lidarsystem (100) zur Erfassung von Objekten (400) in einem Beobachtungsbereich (300) beschrieben umfassend:- eine Sendeeinrichtung (110) mit wenigstens einer Laserquelle (111) zum Erzeugen eines Sendelaserstrahls (112) aus einer zeitlichen Abfolge von Einzellaserpulsen, welche jeweils einen auf einen Teil des Beobachtungsbereichs (300) begrenzten Raumwinkel (310) beleuchten, und in wenigstens einen Abtastpunkt (320) abtasten,- eine Empfangseinrichtung (140) mit einer Detektionsfläche (141) umfassend eine zeilen- oder matrixförmige Subdetektoranordnung (152) aus mehreren in einer ersten Erstreckungsrichtung (144) nebeneinander angeordneten Subdetektoren (142) zum Empfangen des an Objekten (400) im Beobachtungsbereich (300) des Multipuls-Lidarsystems (100) reflektieren und/oder gestreuten Sendelaserstrahls (112) in Form eines Empfangslaserstrahls (220),wobei die Empfangseinrichtung (130) ausgebildet ist, einen vom Sendelaserstrahl (210) erfassten Abtastpunkt (320) auf der Detektionsfläche (141) in Form eines Bildpunkts (230) abzubilden,- eine Scaneinrichtung (120) zum Erzeugen einer Scanbewegung (122) des Sendelaserstrahls (112) in einer Scanrichtung (123) zu einer sukzessiven Abtastung des gesamten Beobachtungsbereichs (300) entlang mehrerer in der Scanrichtung (123) aufeinanderfolgenden Abtastpunkte (320), wobei die Scanbewegung (122) des Sendelaserstrahls (210) ausgebildet ist, einen Bildpunkt (230) bei zeitlich nacheinander folgenden Einzellaserpulsen jeweils entlang der zeilen- oder matrixförmige Subdetektoranordnung (143) verschoben auf der Detektionsfläche (141) abzubilden, und- eine Steuereinrichtung (130) zum Bestimmen von Entfernungsinformationen der Abtastpunkte (320) anhand von Laufzeiten der jeweiligen Einzellaserpulse, wobei die Steuereinrichtung (130) ausgebildet ist, Subdetektoren (142), welche von einem auf der Detektionsfläche (141) aktuell abgebildeten Bildpunkt (230) erfasst werden, zur gemeinsamen Auswertung zu einem dem jeweiligen Bildpunkt (230) individuell zugeordneten Makro-Pixels (160) zu gruppieren.
17 WO2019110192A1
FIELD-EFFECT TRANSISTOR ARRANGEMENT AND METHOD FOR SETTING A DRAIN CURRENT OF A FIELD-EFFECT TRANSISTOR
Publication/Patent Number: WO2019110192A1 Publication Date: 2019-06-13 Application Number: 2018079008 Filing Date: 2018-10-23 Inventor: Schnitzer reiner   Schwarzenberger, Thomas   Tretter, Gregor   Assignee: Robert Bosch GmbH   IPC: H03F1/02 Abstract: A field-effect transistor arrangement (1) is proposed that comprises a field-effect transistor (T) having a back-gate connection (BG) adjustable using a back-gate voltage (VBG), wherein, further, the field-effect transistor (T) has a gate-source voltage (VGS) and a drain-source voltage (VDS) applied to it and a drain current ID flows through the field-effect transistor (T). Further, the field-effect transistor arrangement (1) comprises a control unit (10), connected to the back-gate connection (BG), that is configured to set the drain current (ID) flowing through the field-effect transistor (T) to a setpoint current by regulating the back-gate voltage (VBG) on the back-gate connection (BG), the back-gate voltage (VBG) being regulated on the basis of at least the gate-source voltage (VGS). Further, a method for setting a drain current of a field-effect transistor (T) is proposed.
18 US2019205099A1
QUANTUM RANDOM NUMBER GENERATOR AND METHOD FOR PRODUCING A RANDOM NUMBER BY MEANS OF A QUANTUM RANDOM NUMBER GENERATOR
Publication/Patent Number: US2019205099A1 Publication Date: 2019-07-04 Application Number: 16/323,474 Filing Date: 2017-07-28 Inventor: Herrmann, Ingo   Krayl, Oliver   Schnitzer reiner   Strohm, Thomas   Assignee: Robert Bosch GmbH   IPC: G06F7/58 Abstract: A quantum random number generator is described as having a first single-photon detector that detects a first event, and a second single-photon detector that detects a second event, and as having an electronic circuit by way of which the first single-photon detector and the second single-photon detector are interconnected in such a way that after detection of the first event the latter is outputted and an output of a detected second event is suppressed.
19 US2019383909A1
LIDAR SENSOR FOR DETECTING AN OBJECT
Publication/Patent Number: US2019383909A1 Publication Date: 2019-12-19 Application Number: 16/480,534 Filing Date: 2018-02-07 Inventor: Schnitzer reiner   Bogatscher, Siegwart   Sparbert, Jan   Assignee: Robert Bosch GmbH   IPC: G01S7/481 Abstract: A LIDAR sensor for detecting an object in the surroundings and a method of the LIDAR sensor includes a light source emitting electromagnetic radiation, a micromechanical deflection mirror deflecting the emitted electromagnetic radiation by at least one angle into the surroundings, and a mirror, which includes an aperture situated on a main beam axis of the light source, deflecting onto an optical receiver received electromagnetic radiation that has been reflected from the object.
20 EP3583444A1
LIDAR SENSOR FOR DETECTING AN OBJECT
Title (English): 1
Publication/Patent Number: EP3583444A1 Publication Date: 2019-12-25 Application Number: 18703980.5 Filing Date: 2018-02-07 Inventor: Bogatscher, Siegwart   Sparbert, Jan   Schnitzer reiner   Assignee: Robert Bosch GmbH   IPC: G01S17/42