Country
Full text data for US,EP,CN
Type
Legal Validity
Legal Status
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC(Section)
IPC(Class)
IPC(Subclass)
IPC(Group)
IPC(Subgroup)
Agent
Agency
Claims Number
Figures Number
Citation Number of Times
Assignee Number
No. Publication Number Title Publication/Patent Number Publication/Patent Number Publication Date Publication Date
Application Number Application Number Filing Date Filing Date
Inventor Inventor Assignee Assignee IPC IPC
1 US2020298405A1
ROBOT STOPPING PARALLEL TO INSTALLED OBJECT AND METHOD OF STOPPING THE SAME
Publication/Patent Number: US2020298405A1 Publication Date: 2020-09-24 Application Number: 16/750,855 Filing Date: 2020-01-23 Inventor: Park, Hye Ri   Assignee: LG ELECTRONICS INC.   IPC: B25J9/16 Abstract: Disclosed herein is a robot stopping parallel to an installed object and a method of stopping the same. In the robot stopping parallel to an installed object, a pause state of the robot is determined, and when an obstacle sensor calculates distances from obstacles, the robot moves such that the robot is placed parallel and close to an adjacent one of installed objects disposed around the robot.
2 EP3703914A1
METHOD AND CONTROL MEANS FOR CONTROLLING A ROBOT ASSEMBLY
Publication/Patent Number: EP3703914A1 Publication Date: 2020-09-09 Application Number: 18793415.3 Filing Date: 2018-10-26 Inventor: HÜttenhofer, Manfred   Assignee: KUKA Deutschland GmbH   IPC: B25J9/16
3 EP3700718A1
METHOD AND SYSTEM FOR OPERATING A MOBILE ROBOT
Publication/Patent Number: EP3700718A1 Publication Date: 2020-09-02 Application Number: 18782368.7 Filing Date: 2018-09-28 Inventor: Sharma, Shashank   Zimmermann, Uwe   Lu, Jianlin   Assignee: KUKA Deutschland GmbH   IPC: B25J9/16
4 US10603788B2
Robot simulation apparatus
Publication/Patent Number: US10603788B2 Publication Date: 2020-03-31 Application Number: 15/676,109 Filing Date: 2017-08-14 Inventor: Inoue, Kouzou   Assignee: FANUC CORPORATION   IPC: B25J9/16 Abstract: A robot simulation apparatus includes an information setting unit that sets a type of one or more hands provided on the tool; a storage unit that stores types of the hands in association with three-dimensional models and tool coordinate systems of the hands; a hand position and posture setting unit that sets a position and a posture of each of the hands of the tool attached to an attachment surface of a robot; and a generation unit that generates a three-dimensional model of the robot, in which the three-dimensional model of the hands read based on the set type of the hand is attached to the attachment surface based on the set positions and postures, and that sets a tool coordinate system. The generated three-dimensional model and tool coordinate system are used to perform a simulation of the robot provided with the tool attached to the attachment surface.
5 US10537996B2
Control of swarming robots
Publication/Patent Number: US10537996B2 Publication Date: 2020-01-21 Application Number: 15/309,146 Filing Date: 2015-05-05 Inventor: Egerstedt, Magnus   Lee, Sung Gun   Diaz-mercado, Yancy   Chopra, Smriti   Assignee: Georgia Tech Research Corporation   IPC: B25J9/16 Abstract: Systems and methods for controlling a swarm of mobile robots are disclosed. In one aspect, the robots cover a domain of interest. Each robot receives a density function indicative of at least one area of importance in the domain of interest, and calculates a velocity vector based on the density function and a displace vector relative to an adjacent robot. Each robot moves to the area of importance according to its velocity vector. In some aspects, the robots together perform a sequence of formations. Each robot mimics a trajectory as part of its performance by switching among a plurality of motion modes. Each robot determines its next motion mode based on a displacement vector relative to an adjacent robot.
6 US2020061829A1
AUTOMATED CONSTRUCTION ROBOT SYSTEMS AND METHODS
Publication/Patent Number: US2020061829A1 Publication Date: 2020-02-27 Application Number: 16/552,915 Filing Date: 2019-08-27 Inventor: Askey, David   Yin, Shumei   Assignee: Ascend Robotics LLC   IPC: B25J9/16 Abstract: An automated construction robot system includes: a mobile base assembly configured to be displaceable within a work area; a head assembly configured to process a work surface; an arm assembly configured to moveably-couple the head assembly and the mobile base assembly and controllably-displace the head assembly with respect to the work surface; a machine vision system configured to scan a non-target area and generate non-target area information; and a computational system configured to: manipulate one or more of the mobile base assembly, the head assembly and the arm assembly to apply a coating material to the work surface via the head assembly, process the non-target area information to generate one or more remedial instructions, and manipulate one or more of the mobile base assembly, the head assembly and the arm assembly based, at least in part, upon the one or more remedial instructions.
7 US2020189098A1
SELECTING ACTIONS TO BE PERFORMED BY A ROBOTIC AGENT
Publication/Patent Number: US2020189098A1 Publication Date: 2020-06-18 Application Number: 16/341,184 Filing Date: 2017-10-12 Inventor: Kalakrishnan, Mrinal   Sindhwani, Vikas   Assignee: Google LLC   IPC: B25J9/16 Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a system configured to plan actions to be performed by a robotic agent interacting with an environment to accomplish an objective by determining an optimized trajectory of state—action pairs for accomplishing the objective. The system maintains a current optimized trajectory and a current trust region radius, and optimizes a localized objective within the current trust region radius of the current optimized trajectory to determine a candidate updated optimized trajectory. The system determines whether the candidate updated optimized trajectory improves over the current optimized trajectory. In response to determining that the candidate updated optimized trajectory improves over the current optimized trajectory, the system updates the current optimized trajectory to the candidate updated optimized trajectory and updates the current trust region radius.
8 US2020206933A1
METHOD OF CORRECTING POSITION OF ROBOT AND ROBOT
Publication/Patent Number: US2020206933A1 Publication Date: 2020-07-02 Application Number: 16/234,084 Filing Date: 2018-12-27 Inventor: Yoshida, Masaya   Nakahara, Hajime   Yamaguchi, Takao   Chung, Daniel   Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA   KAWASAKI ROBOTICS (USA), INC.   IPC: B25J9/16 Abstract: A position correction method includes: a step of opposing a hand to a target by moving the hand such that the hand becomes in a predetermined first initial posture; a first position detection step of detecting a position of the target from a rotation angle of a rotation axis when the target blocks a detection light by swinging the hand; a step of opposing the hand to the target by moving the hand such that the hand becomes a predetermined second initial posture different from the first initial posture; a second position detection step of detecting a position of the target from the rotation angle of the rotation axis when the target blocks the detection light by swinging the hand; and a correction amount arithmetic step of obtaining rotation angle correction amounts of the second axis and the third axis based on a difference between the position of the target acquired in the first initial posture and the position of the target acquired in the second initial posture.
9 US2020206921A1
ROBOT MOVEMENT CONTROL METHOD, APPARATUS AND ROBOT USING THE SAME
Publication/Patent Number: US2020206921A1 Publication Date: 2020-07-02 Application Number: 16/236,517 Filing Date: 2018-12-30 Inventor: Xiong, Youjun   Huang, Gaobo   Huang, Xiangbin   Assignee: UBTECH Robotics Corp   IPC: B25J9/16 Abstract: A robot movement control method and apparatus as well as a robot using the same are provided. The method includes: calculating a distance between a robot and each UWB base station; configuring an internal coordinate system according to a preset position of the UWB base station, and calculating a coordinate of the robot in the internal coordinate system according to a distance between the UWB base station and the robot; combining the coordinate of the robot in the internal coordinate system with localization information of an odometer provided on the robot to obtain a combined robot coordinate; and controlling the robot to move in accordance with a preset target position according to the combined robot coordinate. In such manner, UWB base station localization can be used to control the movement of a robot in a limited scene.
10 US2020215696A1
GEOMETRICALLY APPROPRIATE TOOL SELECTION ASSISTANCE FOR DETERMINED WORK SITE DIMENSIONS
Publication/Patent Number: US2020215696A1 Publication Date: 2020-07-09 Application Number: 16/827,227 Filing Date: 2020-03-23 Inventor: Itkowitz, Brandon D.   Dimaio, Simon P.   Gerbi, Craig R.   Rogers, Theodore W.   Zhao, Wenyi   Assignee: Intuitive Surgical Operations, Inc   IPC: B25J9/16 Abstract: A robotic system includes a processor that is programmed to determine and cause work site measurements for user specified points in the work site to be graphically displayed in order to provide geometrically appropriate tool selection assistance to the user. The processor is also programmed to determine an optimal one of a plurality of tools of varying geometries for use at the work site and to cause graphical representations of at least the optimal tool to be displayed along with the work site measurements.
11 CN111376273A
一种类脑启发的机器人认知地图构建方法
Under Examination
Publication/Patent Number: CN111376273A Publication Date: 2020-07-07 Application Number: 202010326608.9 Filing Date: 2020-04-23 Inventor: 刘冬   吕志   邹强   丛明   Assignee: 大连理工大学   IPC: B25J9/16 Abstract: 一种类脑启发的机器人认知地图构建方法,属于机器人环境认知及运动导航技术领域,能够建立认知地图协助机器人进行导航。首先,机器人通过相机获取环境周围的图像信息。然后,视觉里程计对图像信息进行处理得到机器人的旋转角速度以及线速度,并将其分别输入到头朝向细胞模型以及位置细胞模型中,形成机器人对自身位置的感知。视觉特征提取模块通过深度学习网络以及主成分分析算法对图像进行处理,得到机器人对环境的外部感知信息;最后,通过经验地图对信息进行整合,并通过闭环检测以及更新算法对地图进行更新。本发明能解决目前类脑认知地图建图方法中视觉里程计鲁棒性差,以及闭环检测的准确性不够高的问题,能够完成对环境中闭环点的检测以及更新,保证全局一致性。
12 CN111360819A
机器人的控制方法及装置、计算机设备、存储介质
Public
Publication/Patent Number: CN111360819A Publication Date: 2020-07-03 Application Number: 202010090743.8 Filing Date: 2020-02-13 Inventor: 喻凌威   贾怀礼   周宝   陈远旭   Assignee: 平安科技(深圳)有限公司   IPC: B25J9/16 Abstract: 本发明提供了一种机器人的控制方法及装置、计算机设备、存储介质,该方法包括:当控制对象呈现行为动作时,获取所述控制对象的关节位置信息,以及识别所述控制对象的面部特征;根据所述关节位置和所述面部特征计算机器人的控制力矩;根据所述控制力矩计算所述机器人的控制参数,其中,所述控制参数用于控制所述机器人模仿所述行为动作。通过本发明,解决了相关技术中机器人模仿的动作有限、控制机器人不便等技术问题。
13 CN111360808A
一种控制机器人运动的方法、装置及机器人
Under Examination
Publication/Patent Number: CN111360808A Publication Date: 2020-07-03 Application Number: 201811591566.0 Filing Date: 2018-12-25 Inventor: 熊友军   聂鹏   胡旭   黄祥斌   Assignee: 深圳市优必选科技有限公司   IPC: B25J9/16 Abstract: 本发明适用于人工智能技术领域,提供了一种控制机器人运动的方法及装置,包括:当检测到移动指令时,获取机器人的当前起始点位置以及目的地位置;基于所述当前起始点位置和所述目的地位置确定所述机器人的移动路径;当所述移动路径与预设的虚拟墙对应的线段相交时,获取所述机器人的通行资格信息,其中,所述预设的虚拟墙用于将预设的工作区域与所述非工作区域隔离开,所述通行资格信息用于标识是否允许机器人穿越虚拟墙;当所述通行资格信息标识允许机器人穿越虚拟墙时,基于所述移动路径移动至所述目标点位置。通过获取通行资格信息,机器人在出现异常的情况下可从非工作区域返回工作区域,同时保证机器人不会从工作区域主动跨越到非工作区域。
14 CN111347422A
一种提高机器人关节精度的控制方法
Under Examination
Publication/Patent Number: CN111347422A Publication Date: 2020-06-30 Application Number: 201911381759.8 Filing Date: 2019-12-27 Inventor: 张加波   韩建超   周莹皓   杨继之   乐毅   文科   郑立彦   Assignee: 北京卫星制造厂有限公司   IPC: B25J9/16 Abstract: 本发明提供了一种提高机器人关节精度的控制方法,该控制方法保留关节电机侧的编码器作为第一测量系统,将关节负载侧光栅传感器作为第二测量系统引入速度环控制,将第一测量系统和第二测量系统的转速测量值加权耦合,共同作为速度环闭环反馈信息。在该引入光栅传感器的速度环反馈中,相较于单独使用电机侧的编码器的速度环反馈,降低了设定转速与实际转速差值,能够获得较高的速度环增益,可有效提高工业机器人在数控加工等对轨迹要求较高的应用场合的运动精度,利于工业机器人对航空、航天等领域的大型弱刚性特征构件的高效、高精度加工。
15 US2020316779A1
SYSTEM AND METHOD FOR CONSTRAINT MANAGEMENT OF ONE OR MORE ROBOTS
Publication/Patent Number: US2020316779A1 Publication Date: 2020-10-08 Application Number: 16/378,343 Filing Date: 2019-04-08 Inventor: Truebenbach, Eric Lenhart   Polyakov, Evgeny   Lustig, Peter   Assignee: Teradyne, Inc.   IPC: B25J9/16 Abstract: Embodiments of the present disclosure are directed towards a robotic system. The system may include a robot configured to receive an initial constrained approach for performing a robot task. The system may further include a graphical user interface in communication with the robot. The graphical user interface may be configured to allow a user to interact with the robot to determine an allowable range of robot poses associated with the robot task. The allowable range of robot poses may include fewer constraints than the initial constrained approach. The allowable range of poses may be based upon, at least in part, one or more degrees of symmetry associated with a workpiece associated with the robot task or an end effector associated with the robot. The system may also include a processor configured to communicate the allowable range of robot poses to the robot.
16 CN111267088A
一种动作分子的执行方法及装置、设备和存储介质
Under Examination
Publication/Patent Number: CN111267088A Publication Date: 2020-06-12 Application Number: 201811475605.0 Filing Date: 2018-12-04 Inventor: 杜坤   Assignee: 北京猎户星空科技有限公司   IPC: B25J9/16 Abstract: 本申请提供的一种动作分子的执行方法及装置、设备和存储介质,其中,所述方法包括根据待执行动作分子,确定待执行的第十一动作单元序列;获取预先确定的所述待执行动作分子对应的执行偏移量;依次执行所述待执行的第十一动作单元序列中的每个动作单元,生成至少一组待调整的机器人动作控制参数;根据所述执行偏移量,对所述至少一组待调整的机器人动作控制参数进行调整,得到所述至少一组机器人动作控制参数;可以根据预先确定的执行偏移量得到机器人动作控制参数,对机器人进行控制,实现机器人在不同的硬件环境或应用场景下的自适应调整和迁移应用。
17 CN111251306A
一种带有底盘误差的机械臂路径规划方法
Under Examination
Publication/Patent Number: CN111251306A Publication Date: 2020-06-09 Application Number: 202010191628.X Filing Date: 2020-03-18 Inventor: 谢远龙   王书亭   蒋立泉   李耀仲   景伟   杨梓桐   蒋立宇   章小龙   刘超   孙浩东   Assignee: 广东省智能机器人研究院   IPC: B25J9/16 Abstract: 一种带有底盘误差的移动机械臂路径规划方法,包括以下步骤:获取移动底盘在运动空间中实际位置与目标位置的误差值,依据误差值,重构构型空间,并对起始位置和目标位置进行修正,创建以修正后的起始点为根节点的随机树,随机树包括父节点和子节点;在构形空间中产生一个随机点x;搜索与随机点距离最近的节点x;生成新节点x,调用回归过滤机制;调用随机点边界扩展机制,更新边界节点的状态信息,确定边界节点的可扩展性;确定机械臂在工作空间中的位姿,对新节点进行碰撞检测;扩展并更新随机树;检查是否满足终止条件,获取机械臂规划路径。本发明可有效减少机械臂轨迹规划时间,适用于复杂空间场景的机械臂路径规划。
18 CN111267107A
控制方法、机器人、电子设备和可读存储介质
Under Examination
Publication/Patent Number: CN111267107A Publication Date: 2020-06-12 Application Number: 202010207754.X Filing Date: 2020-03-23 Inventor: 郭明理   卜大鹏   陈侃   霍峰   秦宝星   程昊天   Assignee: 上海高仙自动化科技发展有限公司   IPC: B25J9/16 Abstract: 本申请公开了一种防止碰撞的控制方法、机器人、电子设备和可读存储介质。控制方法包括:根据环境障碍物点云数据生成障碍物点并根据障碍物点和障碍物区域生成碰撞检测地图,获取机器人的点集,预设障碍物点和所述点集的阈值距离,根据所述阈值距离控制机器人导航。本申请的控制方法、机器人、电子设备和可读存储介质通过所述预设障碍物点和所述机器人点集的阈值距离控制机器人在地图中导航,从而能够防止机器人与障碍物发生碰撞,实现了机器人在导航过程中,安全稳定的运行。
19 CN111152217A
一种速度控制方法、装置、机器人及存储介质
Under Examination
Publication/Patent Number: CN111152217A Publication Date: 2020-05-15 Application Number: 201911396690.6 Filing Date: 2019-12-30 Inventor: 夏舸   张志强   Assignee: 深圳优地科技有限公司   IPC: B25J9/16 Abstract: 本申请属于速度控制技术领域,尤其涉及一种速度控制方法、装置、机器人及存储介质,通过获取第一速度和识别机器人移动过程中的实时场景,根据实时场景和第一速度确定行驶速度,当机器人在复杂的环境中移动时,可以识别移动过程中的实时场景,并根据实时场景和第一速度确定安全可靠的行驶速度,即使导航控制层失效,机器人的行驶速度依然是安全,可以有效的对机器人的速度进行保护,解决了机器人行驶速度控制准确性较差,安全性较弱的问题。
20 CN111015672A
一种巡检机器人对变电柜进行识别检测的方法
Under Examination
Publication/Patent Number: CN111015672A Publication Date: 2020-04-17 Application Number: 201911394409.5 Filing Date: 2019-12-30 Inventor: 黄炜昭   Assignee: 深圳供电局有限公司   IPC: B25J9/16 Abstract: 本发明公开了一种巡检机器人对变电柜进行识别检测的方法,该巡检机器人扫描该变电柜中的识别码,并判断该识别码所对应的变电柜是否为已检测的变电柜,该巡检机器人以预设角度朝向多个变电柜发射激光以扫描多个变电柜以获得变电柜中的识别码,其中该预设角度倾斜向下;如果判断为否,则该巡检机器人对该变电柜进行检测,且在检测完该变电柜后,标记该识别码所对应的变电柜为已检测的变电柜;该巡检机器人识别出该变电柜的序号,在该巡检机器人检测完该序号所对应的变电柜后,行驶至另一序号更大的变电柜,并进行变电柜检测。实施本发明的巡检机器人对变电柜进行识别检测的方法,能够对识别码所对应的变电柜进行识别和检测,提升作业效率。