Country
Full text data for US,EP,CN
Type
Legal Validity
Legal Status
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC(Section)
IPC(Class)
IPC(Subclass)
IPC(Group)
IPC(Subgroup)
Agent
Agency
Claims Number
Figures Number
Citation Number of Times
Assignee Number
No. Publication Number Title Publication/Patent Number Publication/Patent Number Publication Date Publication Date
Application Number Application Number Filing Date Filing Date
Inventor Inventor Assignee Assignee IPC IPC
1
US2021088657A1
LIDAR SYSTEM WITH SEMICONDUCTOR OPTICAL AMPLIFIER
Publication/Patent Number: US2021088657A1 Publication Date: 2021-03-25 Application Number: 17/101,146 Filing Date: 2020-11-23 Inventor: Shah, Lawrence   Eichenholz, Jason M.   Lachapelle, Joseph G.   Sincore, Alex Michael   Zhu, Cheng   Assignee: Luminar Technologies, Inc.   IPC: G01S17/00 Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce an amplified seed optical signal, where the emitted optical signal includes the amplified seed optical signal. The light source further includes an electronic driver configured to supply electrical current to the seed laser diode and electrical current to the SOA. The lidar system also includes a receiver configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target.
2
EP3814796A1
ADAPTIVE CODING FOR LIDAR SYSTEMS
Publication/Patent Number: EP3814796A1 Publication Date: 2021-05-05 Application Number: 18924237.3 Filing Date: 2018-09-30 Inventor: Zhu, Xuezhou   Xiang, Shaoqing   Assignee: Hesai Technology Co., Ltd.   IPC: G01S7/484
3
EP3803456A1
AN OPTICAL BEAM DIRECTOR
Publication/Patent Number: EP3803456A1 Publication Date: 2021-04-14 Application Number: 19814157.4 Filing Date: 2019-06-06 Inventor: Li, Ran   Lodin, Rebecca   Ortega, Tiago   Tabacchini, Andrea   Assignee: Baraja Pty Ltd   IPC: G01S17/00
4
EP3789842A1
METHOD FOR LOCATING A VEHICLE AND VEHICLE FOR PERFORMING THE METHOD
Publication/Patent Number: EP3789842A1 Publication Date: 2021-03-10 Application Number: 20189577.8 Filing Date: 2020-08-05 Inventor: KÖnig, Ralf   Ignatov, Marina   Assignee: STILL GmbH   IPC: G05D1/02 Abstract: Die Erfindung betrifft ein Verfahren zur Lokalisierung eines auf einem Fahrboden (5) beweglichen Fahrzeugs (1), insbesondere eines Flurförderzeugs, sowie ein Fahrzeug (1) zur Durchführung des Verfahrens. Es wird vorgeschlagen, dass mittels einer am Fahrzeug (1) angeordneten Projektionseinheit (3) ein Projektionsmuster (7) auf den Fahrboden (5) projiziert wird, das Projektionsmuster (7) mittels eines am Fahrzeug (1) angeordneten optischen Sensors (4) erfasst wird, und die Sensordaten in einer Datenverarbeitungseinheit ausgewertet werden, wobei aus Veränderungen des Projektionsmusters (7) aufgrund von Bodenunebenheiten des Fahrbodens (5) ein Rauheitsbild des Fahrbodens (5) erstellt wird, das eine Lokalisierung des Fahrzeugs (1) auf dem Fahrboden (5) ermöglicht.
5
CN112904361A
一种基于激光扫描的发动机推力线精确测量方法
Public
Publication/Patent Number: CN112904361A Publication Date: 2021-06-04 Application Number: 202011435910.4 Filing Date: 2020-12-10 Inventor: 向海军   张玉磊   赵红娟   黄爱武   杨扬   许刚   Assignee: 成都飞机工业(集团)有限责任公司   IPC: G01S17/89 Abstract: 一种基于激光扫描的发动机推力线精确测量方法,包括以下步骤:在激光扫描得到的待匹配的发动机喷管的两组点云数据的重叠区域内,分别选取一个点集,其中一个点云数据内的点集为源点集,另一个点云数据内的点集为目标点集;将源点集进行旋转和/或平移的刚性变换,使得源点集经过刚性变换后的对应点集和目标点集的误差最小;计算源点集经过旋转和/或平移的刚性变换后的新的对应点集;计算新的对应点集中的点与目标点集中的对应的点的平均距离,建立目标函数,并设定阈值,循环迭代直至收敛;对发动机喷管型面点云数据中的目标点集和对应点集进行逆向建模,拟合得到发动机推力线。
6
EP3828498A1
ACCESSORY PART FOR A LASER RECEIVER FOR TRANSMITTING A LASER LINE
Publication/Patent Number: EP3828498A1 Publication Date: 2021-06-02 Application Number: 19211552.5 Filing Date: 2019-11-26 Inventor: Calkic, Ermin   Lampert, Patrick   Assignee: Hilti Aktiengesellschaft   IPC: G01C15/00 Abstract: Zubehörteil (30) für einen Laserempfänger zum Übertragen einer Laserlinie auf eine Arbeitsfläche, umfassend eine Grundplatte (35) mit einer Vorderseite und einer Rückseite, mit der das Zubehörteil (30) auf der Arbeitsfläche anordbar ist, eine Verbindungseinrichtung (36) zum Verbinden des Laserempfängers mit dem Zubehörteil (30) und ein Drehgelenk (37), das zwischen der Grundplatte (35) und der Verbindungseinrichtung (36) angeordnet ist, wobei die Verbindungseinrichtung (36) um eine Drehachse (39) relativ zur Grundplatte (35) zwischen einem ersten Winkel und einem zweiten Winkel drehbar ist.
7
EP3824320A1
ADAPTIVE METHOD AND MECHANISMS FOR FAST LIDAR AND POSITIONING APPLICATIONS
Publication/Patent Number: EP3824320A1 Publication Date: 2021-05-26 Application Number: 19898586.3 Filing Date: 2019-12-06 Inventor: YÜce, Emre   YÜksel, Ça Da Anil   Assignee: ORTA DOGU TEKNIK UNIVERSITESI   IPC: G01S17/88
8
EP3832351A1
APPARATUSES AND METHODS FOR TRAINING A MACHINE LEARNING NETWORK FOR USE WITH A TIME-OF-FLIGHT CAMERA
Publication/Patent Number: EP3832351A1 Publication Date: 2021-06-09 Application Number: 19213233.0 Filing Date: 2019-12-03 Inventor: Schaefer, Henrik   Buratto, Enrico   Agresti, Gianluca   Zanuttigh, Pietro   Assignee: Sony Semiconductor Solutions Corporation   Università Degli Studi Di Padova   IPC: G01S17/00 Abstract: The present disclosure proposes a concept of training a machine learning network for use with a ToF camera 10. Based on a predefined synthetic scene, it is simulated a ground truth time resolved illumination return signal (backscattering vector) 18 for a light pulse emitted from the ToF camera to the synthetic scene and scattered back from the synthetic scene to the ToF camera. The synthetic scene comprises a plurality of scene points with known distances between each of the scene points and the ToF camera 10. Based on the ground truth time resolved illumination return signal 18 and a simulation model of the ToF camera 10, it is then simulated an output signal of at least one ToF pixel capturing the synthetic scene. Based on the simulated output signal of the ToF pixel and the ground truth time resolved illumination return signal, weights of the machine learning network are adjusted to cause the machine learning network to map the simulated output signal of the ToF pixel to an output time resolved illumination return signal approximating the ground truth time resolved illumination return signal. One of the main sources of errors in ToF technology is the Multi-Path Interference (MPI) phenomenon. The MPI effect can occur either intra-camera, due to the light reflection and scattering with an imaging lens and aperture, or inside the scene. Input data for the training is the simulated backscattering vector for one or more ToF pixels as ground truth and simulated ToF measurement data of said one or more ToF pixels that are subject to exactly this ground truth backscattering vector. This process can be done for all pixels of a ToF pixel array 16 and/or for different modulation frequencies (e.g. 20, 50 and 60 MHz modulation frequency). The machine learning network 40 is then trained to estimate a backscattering vector with minimum loss compared to the ground truth backscattering vector for each pixel. A suitable distance metric may be the so-called Earth Mover Distance (EMD) between the estimated backscattering vector and the ground truth backscattering vector.
9
CN112882062A
天基CO2通量激光探测装置
Public
Publication/Patent Number: CN112882062A Publication Date: 2021-06-01 Application Number: 202110053184.8 Filing Date: 2021-01-15 Inventor: 姚伟   王磊   杨宏志   毛叶飞   张子越   高原   于志同   马蓉   张思勃   胡洛佳   Assignee: 中国空间技术研究院   IPC: G01S17/95 Abstract: 本发明提供了一种天基CO通量激光探测装置,包括激光模块、收发模块以及解算模块;激光模块包括主激光器、第一单频激光器、第二单频激光器及光开关;光开关用于控制交替发出第一单频激光器、第二单频激光器的输出激光;收发模块包括光学收发装置及伺服系统,光学收发装置将输出激光发射至测量区域,以及接收测量区域的回波信号;解算模块用于根据回波信号进行信号处理解算得到测量区域的风场廓线信息及CO浓度廓线信息,并计算得到CO通量数据。本发明的天基CO通量激光探测装置设置于天基平台可以高精度、高可靠性地测量地表的CO收支量。
10
EP3784534A1
CLEANING OF ENVIRONMENT SENSORS OF A MOTOR VEHICLE
Publication/Patent Number: EP3784534A1 Publication Date: 2021-03-03 Application Number: 19722018.9 Filing Date: 2019-04-24 Inventor: Pyvovar, Dimitri   Lottermann, Christian   Assignee: Bayerische Motoren Werke Aktiengesellschaft   IPC: B60S1/56
11
EP3812864A1
AUTONOMOUS MOBILE ROBOT SYSTEM FOR TRANSPORTING PAYLOADS
Publication/Patent Number: EP3812864A1 Publication Date: 2021-04-28 Application Number: 19205336.1 Filing Date: 2019-10-25 Inventor: Ejstrup, Hansen Michael   Assignee: Mobile Industrial Robots A/S   IPC: G05D1/02 Abstract: The present invention provides a transport system comprising an Autonomous Mobile Robot (AMRs) (1) and the equipment to be moved (2), which can be operated safely and efficiently within an industrial/commercial environment, while the AMRs (1), as well as the equipment to be moved (2), can be produced in a cost-efficient way. A particular object of the invention is to: providing supporting members (4) of the equipment to be moved, which have no or only a negligible impact on the safety system, providing equipment to be moved (2) which can carry heavy payloads, preferably of hundreds and thousands of kilograms; providing a safety sensor system for an AMR, which can provide protective zones (5) around the AMR and the equipment to be moved and where the supporting members (4) of the equipment to be moved (2) have no or only a negligible impact on the safety of transportation. Another object of the invention is the correct attachment of the cart/shelf (2) to the AMR (1) is ensured before and during driving.
12
EP3771928A1
SIMULATION OF AN ACTIVE OPTICAL SENSOR SYSTEM
Publication/Patent Number: EP3771928A1 Publication Date: 2021-02-03 Application Number: 20186897.3 Filing Date: 2020-07-21 Inventor: Sergeev, Nikolai   Assignee: Valeo Schalter und Sensoren GmbH   IPC: G01S17/00 Abstract: Gemäß einem computerimplementierten Simulationsverfahren zum Simulieren einer Abtastung eines Objekts (15) mit einem aktiven optischen Sensorsystem (7) wird eine Beschreibung einer Objektoberfläche vorgegeben. Mittels einer Recheneinheit (19) wird basierend auf der Beschreibung der Objektoberfläche eine Menge von diskreten Punkten erzeugt und wird für jeden der Punkte eine Antwortfunktion (20) erzeugt, sowie eine Superposition (21) der erzeugten Antwortfunktionen (20) bestimmt. Mittels der Recheneinheit (19) wird eine virtuelle Strahlungsleistung auf einer aktiven Oberfläche des Sensorsystems (7) abhängig von der Superposition (21) bestimmt.
13
EP3798907A1
SYSTEM AND METHOD FOR DETECTING UNMANNED AERIAL VEHICLES
Publication/Patent Number: EP3798907A1 Publication Date: 2021-03-31 Application Number: 20195968.1 Filing Date: 2020-09-14 Inventor: Turov, Vladimir E.   Kleshnin, Vladimir Y.   Dorokhov, Alexey O.   Vankov, Andrey A.   Assignee: AO Kaspersky Lab   IPC: G06K9/00 Abstract: A method for detecting unmanned aerial vehicles (UAV) includes detecting an unknown flying object in a monitored zone of air space. An image of the detected unknown flying object is captured. The captured image is analyzed to classify the detected unknown flying object. A determination is made, based on the analyzed image, whether the detected unknown flying object comprises a UAV.
14
US10901089B2
Coherent LIDAR method and apparatus
Publication/Patent Number: US10901089B2 Publication Date: 2021-01-26 Application Number: 15/936,240 Filing Date: 2018-03-26 Inventor: Zhang, Chunshu   Dumais, Patrick   Goodwill, Dominic John   Assignee: HUAWEI TECHNOLOGIES CO., LTD.   IPC: G01S17/00 Abstract: A coherent LIDAR method and apparatus are provided, in which two optical signals having a first frequency difference are reflected by an object. A difference in frequency between the corresponding received and reflected signals is determined. The frequency difference between the reflected signals differs from the first frequency difference due to Doppler effects. The object velocity is determined based on a comparison between the first frequency difference and the frequency difference in the reflected signals. The emitted signals can be produced by modulating a common light source. The reflected signals are inherently mixed at the receiver and further processed. Distance to the object can be determined by pulsing the emitted signals and measuring a time of flight by detecting corresponding pulse edges in the reflected signals, or by using phase sweeping. The emitter can be implemented using an optical phased array.
15
CN112711002A
一种基于CO2-DIAL模拟测量的点源CO2排放的新型估算方法
Substantial Examination
Publication/Patent Number: CN112711002A Publication Date: 2021-04-27 Application Number: 202011539156.9 Filing Date: 2020-12-23 Inventor: 邱若楠   韩舸   史天奇   裴志鹏   Assignee: 武汉大学   IPC: G01S7/48 Abstract: 本发明公开了一种基于CO‑DIAL模拟测量的点源CO排放的新型估算方法,该方法利用高斯扩散模型和范围解析的CO浓度来反演特定局部点源的CO排放;包括以下步骤:计算测量差分吸收激光雷达观测点的位置;利用高斯线性扩散模型建立线性化方程;使用Jacobi迭代算法对方程进行求解。根据烟囱不同的高度计算得到的观测点的CO浓度与实测观测点的CO进行比较,当误差最小时,确定强点源的有效排放高度,进而确定强点源的CO2排放强度。本发明的反演方法与基于地面的CO差分吸收激光雷达结合使用,可以高精度的获取点源CO排放的强度,将为人为CO排放量监测和验证提供重要的补充手段。
16
EP3584127B1
MODULE FOR CLEANING A DEVICE FOR PROTECTING AN OPTICAL ELEMENT AND ASSOCIATED DRIVING-ASSISTANCE SYSTEM
Publication/Patent Number: EP3584127B1 Publication Date: 2021-03-24 Application Number: 19180407.9 Filing Date: 2019-06-14 Inventor: Izabel, Vincent   Jarasson, Jean-michel   Caillot, Gérald   Assignee: Valeo Systèmes d'Essuyage   IPC: B60S1/52
17
CN112285734A
基于道钉的港口无人集卡高精度对准方法及其对准系统
Substantial Examination
Publication/Patent Number: CN112285734A Publication Date: 2021-01-29 Application Number: 202011188957.5 Filing Date: 2020-10-30 Inventor: 刘鹤云   王杰   吴鑫涛   常桢   Assignee: 北京斯年智驾科技有限公司   IPC: G01S17/88 Abstract: 本申请公开了一种基于道钉的港口无人集卡高精度对准方法及其对准系统,对准方法包括:获取当前港口的区域后铺设道钉;对所铺设的道钉进行粗提取后再利用定位和预设结果进行细提取,获取道钉的单帧检测结果;获取多帧数据作为候选帧,形成位姿变换矩阵后将候选帧的所有道钉检测结果均变换到当前帧的局部坐标系下;基于融合算法将历史道钉检测结果和当前道钉检测结果融合后得到偏移量的估计结果,并投影到行进方向作为位置结果输出。本申请所提出的高精度对准方法,可以满足无人驾驶在港口全自动化运输中的精度要求,对准频率不低于10HZ,对准误差不高于±3cm,对准成功率不低于99.99%;满足港口真实作业需求,安全且稳定。
18
CN112731436A
基于点云上采样的多模态数据融合可行驶区域检测方法
Substantial Examination
Publication/Patent Number: CN112731436A Publication Date: 2021-04-30 Application Number: 202011501003.5 Filing Date: 2020-12-17 Inventor: 金晓   沈会良   Assignee: 浙江大学   IPC: G01S17/86 Abstract: 本发明公开了一种基于点云上采样的多模态数据融合可行驶区域检测方法,主要包括空间点云自适应上采样和多模态数据融合可行驶区域检测两个部分。通过联合标定算法对相机与激光雷达进行配准,将点云投影至图像平面获取稀疏点云图,利用像素局部窗口计算边缘强度信息,自适应选择点云上采样方案,获得稠密点云图;对所得稠密点云图与RGB图像进行特征提取和交叉融合,实现可行驶区域快速检测。本发明的检测方法能够实现可行驶区域快速、准确的检测分割。
19
EP3803448A1
METHOD AND ASSEMBLY FOR CALIBRATING FLYING-OBJECT-MOUNTED SENSORS
Publication/Patent Number: EP3803448A1 Publication Date: 2021-04-14 Application Number: 19729702.1 Filing Date: 2019-06-04 Inventor: Borg, Erik   Schmidt, Karsten   Assignee: Deutsches Zentrum für Luft- und Raumfahrt e.V.   IPC: G01S7/497
20
US2021096220A1
METHOD AND SYSTEM FOR DETERMINING CORRECTNESS OF LIDAR SENSOR DATA USED FOR LOCALIZING AUTONOMOUS VEHICLE
Publication/Patent Number: US2021096220A1 Publication Date: 2021-04-01 Application Number: 16/695,381 Filing Date: 2019-11-26 Inventor: Kumar, R. Balaji Sunil   Sarkar, Manas   Assignee: Wipro Limited   IPC: G01S7/48 Abstract: Disclosed herein is method and system for determining correctness of Lidar sensor data used for localizing autonomous vehicle. The system identifies one or more Region of Interests (ROIs) in Field of View (FOV) of Lidar sensors of autonomous vehicle along a navigation path. Each ROI includes one or more objects. Further, for each ROI, system obtains Lidar sensor data comprising one or more reflection points corresponding to the one or more objects. The system forms one or more clusters in each ROI. The system identifies a distance value between, one or more clusters projected on 2D map of environment and corresponding navigation map obstacle points, for each ROI. The system compares distance value between one or more clusters and obstacle points based on which correctness of Lidar sensor data is determined. In this manner, present disclosure provides a mechanism to detect correctness of Lidar sensor data for navigation in real-time.
Total 93 pages