Country
Full text data for US,EP,CN
Type
Legal Validity
Legal Status
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC(Section)
IPC(Class)
IPC(Subclass)
IPC(Group)
IPC(Subgroup)
Agent
Agency
Claims Number
Figures Number
Citation Number of Times
Assignee Number
No. Publication Number Title Publication/Patent Number Publication/Patent Number Publication Date Publication Date
Application Number Application Number Filing Date Filing Date
Inventor Inventor Assignee Assignee IPC IPC
1 CN111025316A
中频信号非线性相位误差补偿方法、测距法、装置和介质
Under Examination
Publication/Patent Number: CN111025316A Publication Date: 2020-04-17 Application Number: 201911380041.7 Filing Date: 2019-12-27 Inventor: 刘柯   郭天茂   缪寅宵   王晓光   朱浩   鲍晨星   王锴磊   袁媛   Assignee: 北京航天计量测试技术研究所   中国运载火箭技术研究院   IPC: G01S17/32 Abstract: 本发明公开了一种中频信号非线性相位误差补偿方法、测距法、装置和介质。其中,该中频信号非线性相位误差补偿方法用于调频连续波激光测距系统;该调频连续波激光测距系统包括参考支路和测量支路;该方法至少可以包括:获取参考支路中频信号在时域内的相位误差分布;对参考支路中频信号在时域内的相位误差分布进行放大,得到测量支路中频信号的相位误差补偿量分布;利用测量支路中频信号的相位误差补偿量分布,对测量支路中频信号的相位误差进行补偿。本公开实施例通过上述技术方案,解决了如何有效地补偿中频信号非线性相位误差的技术问题,而且硬件消耗不多,可以准确地解算中频信号频率,并最终可以提高调频连续波激光测距系统的测距精度。
2 DE102018117792A1
Vorrichtung zur ortsaufgelösten Abstands- und/oder Geschwindigkeitsermittlung eines Objekts
Publication/Patent Number: DE102018117792A1 Publication Date: 2020-01-30 Application Number: 102018117792 Filing Date: 2018-07-24 Inventor: Westphal, Peter   HÖller, Frank   Assignee: Carl Zeiss AG   IPC: G01S17/32 Abstract: Die Erfindung betrifft eine Vorrichtung zur ortsaufgelösten -und/oder Geschwindigkeitsermittlung eines Objekts, mit wenigstens einer Lichtquelle (201, 301) zum Aussenden eines optischen Signals mit zeitlich variierender Frequenz, einer Auswerteeinrichtung zur Ermittlung eines Abstandes und/oder einer Geschwindigkeit des Objekts (210, 310) auf Basis eines aus dem Signal hervorgegangenen, an dem Objekt reflektierten oder gestreuten Messsignals, einer AWG-Anordnung (100, 205, 305, 1010), welche eine Mehrzahl von AWG's aufweist, wobei jedes dieser AWG's eine frequenzselektive Verteilung des Messsignals auf eine zu dem jeweiligen AWG gehörende Mehrzahl von Ausgangskanälen bewirkt, und einem Abbildungssystem (206, 306, 1020) zur optischen Abbildung dieser Ausgangskanäle auf das Objekt (210, 310).
3 EP3726248A1
RANGING DEVICE AND CONTROL METHOD
Publication/Patent Number: EP3726248A1 Publication Date: 2020-10-21 Application Number: 17934989.9 Filing Date: 2017-12-15 Inventor: Noguchi, Hidemi   Abe, Junichi   Assignee: NEC Corporation   IPC: G01S17/32 Abstract: A distance-measuring apparatus (2000) generates transmission light by generating a distance measurement signal, and subjecting an optical carrier wave to quadrature modulation on the basis of the generated distance measurement signal. The distance-measuring apparatus (2000) outputs transmission light, and receives reflected light generated by reflecting the transmission light on an object (10) to be measured. The distance-measuring apparatus (2000) compares the received reflected light with reference light to compute a distance from the distance-measuring apparatus (2000) to the object (10) to be measured.
4 EP3719537A1
MEASUREMENT OF DISTANCES
Publication/Patent Number: EP3719537A1 Publication Date: 2020-10-07 Application Number: 19167193.2 Filing Date: 2019-04-04 Inventor: Tschuch, Dr. Sebastian   Gimpel, Dr. Hartmut   Assignee: SICK AG   IPC: G01S17/32 Abstract: Es wird eine optoelektronische Vorrichtung (10) zum Messen von Abständen zu einem Objekt in einem Überwachungsbereich (26) angegeben, mit einem Lichtsender (12) zum Aussenden von kohärentem Sendelicht (16) in den Überwachungsbereich, mit einem Lichtempfänger (32) zum Empfangen von Empfangslicht (28) aus dem Überwachungsbereich und mit einer Steuer- und Auswertungseinheit (34), die dafür ausgebildet ist, eine Codefolge auf das Sendelicht aufzumodulieren und die Codefolge im Empfangslicht mit der bekannten Codefolge im Sendelicht als Referenz zu vergleichen, um die Lichtlaufzeit und daraus einen Abstand zu bestimmen. Dabei ist die Steuer- und Auswertungseinheit weiterhin dafür ausgebildet, die Codefolge als Phasenmodulation der Lichtwelle selbst aufzumodulieren, wobei ein Teil des Sendelichts als Referenzlicht (18) zum Lichtempfänger geführt ist, wo es mit dem Empfangslicht interferiert, und der Lichtempfänger detektiert das entstehende Interferenzsignal.
5 RU194968U1
СВЕТОВОЙ ИНДИКАТОР ВОЗНИКНОВЕНИЯ ПРЕПЯТСТВИЯ НА ЖЕЛЕЗНОДОРОЖНОМ ПУТИ
Publication/Patent Number: RU194968U1 Publication Date: 2020-01-09 Application Number: 2018136719 Filing Date: 2018-10-17 Inventor: Assignee: IPC: G01S17/32 Abstract: Световой индикатор включает в себя две части - два светодиода, один - индикатор питания, загорающийся при появлении в зоне видимости препятствия, а другой - индикатор срабатывания датчика, реагирующий на препятствие, находящееся на рельсовом полотне. На датчике размещен инфракрасный фотоприемник. Наличие препятствия определяется по интенсивности отраженного инфракрасного излучения. Подстрочным резистором на плате датчика можно установить требуемую чувствительность устройства. Световой индикатор реагирует на препятствия в диапазоне от 0,5 до 1 км, угол зрения датчика 35 градусов. Информацию об обнаружении препятствия световой индикатор передает на электронный скоростемер, установленный в локомотиве. Регистрация параметров осуществляется на металлизированную бумажную или пластиковую ленту, а также в съемный электронный модуль памяти. 2 ил.
6 WO2020016075A1
ELECTRONIC DEVICE AND METHOD
Publication/Patent Number: WO2020016075A1 Publication Date: 2020-01-23 Application Number: 2019068546 Filing Date: 2019-07-10 Inventor: Van, Der Tempel Ward   Ding, Qing   Belokonskiy, Victor   Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION   SONY DEPTHSENSING SOLUTIONS SA/NV   IPC: G01S17/32 Abstract: An electronic device comprising circuitry configured to generate a coded modulation signal (54; 60) for modulating illumination light (16; 55) transmitted by a time of flight camera (3).
7 CN111596306A
一种高轨空间碎片激光测距卫星星座设计方法
Under Examination
Publication/Patent Number: CN111596306A Publication Date: 2020-08-28 Application Number: 202010466828.1 Filing Date: 2020-05-28 Inventor: 孙威   薛莉   Assignee: 北京跟踪与通信技术研究所   IPC: G01S17/32 Abstract: 本发明公开了一种高轨空间碎片激光测距卫星星座设计方法,将卫星星座设计为卫星呈分布式分布,并部署在地球同步轨道所在球面上,卫星个数为3颗或4颗,两两间距相同;星座中每颗卫星携带的激光测距系统选取kHz重复频率的激光器;设计与激光脉冲重复频率f有关的星座探测信噪比作为激光器参数选择的目标函数,得到卫星所携带激光器可成功识别高轨空间碎片漫反射回波所需具备的单脉冲能量最低值,按照单脉冲能量最低值配置激光器。
8 EP3627184A1
LASER RADAR DEVICE AND FREQUENCY MODULATION CONTROL METHOD
Publication/Patent Number: EP3627184A1 Publication Date: 2020-03-25 Application Number: 17914943.0 Filing Date: 2017-06-20 Inventor: Nishino, Yuichi   Imaki, Masaharu   Kameyama, Shumpei   Assignee: Mitsubishi Electric Corporation   IPC: G01S17/32 Abstract: The laser radar device (1) includes: a modulated light generator (10, 11) configured to generate modulated laser light using frequency modulation based on a control parameter; an optical combiner (15) configured to combine the received light and the local light to generate interference light; a photodetector (20) configured to detect the interference light and output an electrical signal; a frequency-to-voltage converter (31) configured to convert the electrical signal into a voltage signal; a characteristic calculator (32) configured to measure a characteristic value of the voltage signal; an evaluator (33) configured to evaluate, on a basis of the characteristic value, whether a center frequency of a spectrum of a return signal component is within a range of a demodulation band of a demodulation circuit (21); and a parameter setting unit (34) configured to change the control parameter when it is evaluated that the center frequency is not within the range of the demodulation band.
9 JP2020008475A
レーザ測長器
Publication/Patent Number: JP2020008475A Publication Date: 2020-01-16 Application Number: 2018131171 Filing Date: 2018-07-11 Inventor: Assignee: IPC: G01S17/32 Abstract: 【課題】より簡易な構成で正確に距離を算出することができるレーザ測長器を提供する。【解決手段】レーザ測長器は、レーザ素子と、変調レーザ光をレーザ素子から射出させる駆動制御部と、変調レーザ光の一部を所定の反射面で反射させる光学素子と、測定対象物で反射してレーザ素子に戻入した変調レーザ光との干渉による第1のビート信号と、反射面で反射してレーザ素子に戻入した変調レーザ光との干渉による第2のビート信号と、が重畳した変調レーザ光を検出する検出部と、第1のビート信号の周波数に基づいて、所定の基準位置から測定対象物までの距離を算出する距離算出部と、を備え、距離算出部は、第2のビート信号の周波数と、レーザ素子から反射面までの光学的距離と、に基づいてレーザ素子及び駆動制御部の少なくとも一方の特性変動に起因する誤差が補正された距離を算出する。【選択図】図1
10 CN111308488A
对称伪随机码相位调制全光聚焦相干激光方法及装置
Under Examination
Publication/Patent Number: CN111308488A Publication Date: 2020-06-19 Application Number: 202010181270.2 Filing Date: 2020-03-16 Inventor: 职亚楠   孙建锋   潘卫清   戴恩文   Assignee: 杭州爱莱达科技有限公司   IPC: G01S17/32 Abstract: 本发明公开了一种对称伪随机码相位调制全光聚焦相干激光方法,激光光源输出光束后经保偏分束器分为信号光束和本振光束;通过对称伪随机码对信号光束进行高速电光位相调制,然后发射至目标并接收目标的回波光束,回波光束与本振光束进行相干正交接收,得到相干接收信号;采用第一振幅型线阵空间光调制器用于加载相干接收信号内的延时对称伪随机码;同时原对称伪随机码经过可变延时电路后得到可变延时对称伪随机码,对可变延时对称伪随机码和延时对称伪随机码进行全光聚焦处理,通过聚焦点的时延量获得远距离目标的高精度距离信息。本发明可以克服传统数字相关处理方式造成的瓶颈,具有高速优势,而且结构简单,能够实现高重频激光雷达距离探测,且具有整体系统小型化,运行容易的特点。
11 CN111308489A
双通道伪随机码相位调制光学域解析聚焦相干激光方法及装置
Under Examination
Publication/Patent Number: CN111308489A Publication Date: 2020-06-19 Application Number: 202010181287.8 Filing Date: 2020-03-16 Inventor: 职亚楠   孙建锋   潘卫清   戴恩文   Assignee: 杭州爱莱达科技有限公司   IPC: G01S17/32 Abstract: 本发明公开了一种伪随机码位相调制激光雷达的光学域解析聚焦方法及装置,激光光源输出光束分为参考光束和信号光束;将信号光束经过位相调制后发射至目标,并接收回波光束;将参考光束通过相位调制的延时,与回波光束进入光学桥接器中形成干涉光场,使回波伪随机码信号与延时伪随机码信号进行干涉得到相干接收信号,且回波伪随机码信号与延时伪随机码信号通过外触发电路与相干接收信号进行同步接收,实现光学域解析聚焦,进而获得目标的高精度距离信息。本发明能够在获得高距离分辨率的同时降低对光电探测和采样器件的带宽要求,此外还舍去了相关运算,大幅度降低软硬件成本,不仅实现高重频激光距离探测,而且整体系统小型化,运行容易。
12 CN111948664A
基于色散系数调制的调频连续波激光雷达色散补偿方法
Public
Publication/Patent Number: CN111948664A Publication Date: 2020-11-17 Application Number: 202010828730.6 Filing Date: 2020-08-18 Inventor: 姜朔   刘博   赵彬   王盛杰   Assignee: 中国科学院光电技术研究所   IPC: G01S17/32 Abstract: 本发明公开了一种基于色散系数调制的调频连续波激光雷达色散补偿方法。在调频连续波激光测距系统中为了消除激光调制非线性,往往采用双干涉光路,以辅助干涉仪的信号作为重采样时钟。但这两个干涉光路存在的色散失配现象会导致测距分辨率和精度的降低。本发明利用延时光纤端面反射的干涉信号在重采样过程中不受色散影响的特点,对其进行色散系数调制,并以其作为基准对目标反射的重采样信号再次进行等相位间隔的采样,由此消除两个干涉光路色散失配对距离测量带来的影响。此方法无需重复迭代补偿色散引入的相位误差,在初次确定色散调制系数后可以直接对其他测量结果进行色散补偿,极大的简化了色散补偿的效率和速度。
13 US2020049804A1
LASER RADAR DEVICE
Publication/Patent Number: US2020049804A1 Publication Date: 2020-02-13 Application Number: 16/341,345 Filing Date: 2016-11-02 Inventor: Haraguchi, Eisuke   Ando, Toshiyuki   Assignee: Mitsubishi Electric Corporation   IPC: G01S7/491 Abstract: There is the problem with conventional laser radar devices that it is difficult to determine the line of sight from measurement data. A laser radar device according to the present invention includes: a wavelength-tunable light source configured to emit light with a plurality of wavelengths; an optical branch coupler configured to divide the light emitted by the wavelength-tunable light source into local light and transmission light; an optical phase modulator configured to apply, to the transmission light or the local light, frequency shifts for wavelength discrimination of different shift amounts corresponding to the respective wavelengths of the light emitted by the wavelength-tunable light source; a wavelength separator configured to perform switching between light paths for output, in response to a wavelength of the transmission light; an optical antenna configured to emit into space the transmission light output by the wavelength separator, and configured to receive, as received light, backward-scattered light generated from transmission light in space in which lines of sight corresponding to the respective wavelengths of the transmission light are determined; an optical heterodyne receiver configured to receive the local light and the received light, and configured to perform heterodyne detection; and a signal processor configured to perform frequency analysis of an output signal of the optical heterodyne receiver.
14 CN108303704B
一种基于偏振调制的激光测量方法及激光雷达
Valid
Title (English): A Laser Measurement Method Based on Polarization Modulation and Lida
Publication/Patent Number: CN108303704B Publication Date: 2020-01-07 Application Number: 201810022326.2 Filing Date: 2018-01-10 Inventor: 徐忠扬   陈凯   潘时龙   张洪祥   薛敏   王祥传   Assignee: 南京航空航天大学   IPC: G01S17/32 Abstract: 本发明公开了一种基于偏振调制的激光测量方法。本发明将线性调频微波信号通过偏振调制器调制于光载波上,产生偏振调制光信号,其中奇数阶边带信号与包含载波信号在内的偶数阶边带信号分别处于正交的两个偏振态上;然后将所述偏振调制光信号中的一侧边带去除,得到仅包含载波信号和另一侧边带的探测光信号;由于探测光信号中的光载波和一阶边带在正交的两个偏振态上,因此可同时对两路不同偏振态的回波信号分别进行处理,从而获得回波信号的延时信息和多普勒频移信息,进而得到待测物的距离和速度信息。本发明还公开了一种基于偏振调制的激光雷达。由于本发明的测距与测速是分开进行的,因此能极大地降低相位噪声,提高测量的信噪比和精确性。
15 US2020209366A1
FMCW LIDAR WITH WAVELENGTH DIVERSITY
Publication/Patent Number: US2020209366A1 Publication Date: 2020-07-02 Application Number: 16/236,484 Filing Date: 2018-12-29 Inventor: Maleki, Lutfollah   Assignee: GM Cruise Holdings LLC   IPC: G01S7/491 Abstract: Various technologies described herein pertain to multiple laser, single optical resonator lidar systems. A lidar system includes a single optical resonator optically coupled to at least a first laser and a second laser. The optical resonator is formed of an electrooptic material. The first laser and the second laser are optically injection locked to the optical resonator. Moreover, a modulator applies a time-varying voltage to the optical resonator to control modulation of an optical property of the electrooptic material, which causes the first laser to generate a first frequency modulated optical signal comprising a first series of optical chirps and/or the second laser to generate a second frequency modulated optical signal comprising a second series of optical chirps. Further, front end optics transmits at least a portion of the first frequency modulated optical signal and/or the second frequency modulated optical signal into an environment from the lidar system.
16 US2020284885A1
DERIVATION OF DEPTH INFORMATION FROM TIME-OF-FLIGHT (TOF) SENSOR DATA
Publication/Patent Number: US2020284885A1 Publication Date: 2020-09-10 Application Number: 16/750,970 Filing Date: 2020-01-23 Inventor: Miller, Mark E.   Assignee: Synaptics Incorporated   IPC: G01S7/4865 Abstract: A time-of-flight sensor includes a light source to transmit periodic bursts light in a direction of one or more objects and an array of optical sensing elements to detect light reflected from the one or more objects and generate sensor data corresponding to the detected light. A distance calculator determines depth information of the one or more objects by determining a general phase shift of the reflected light relative to the transmitted light based on a first frame of the sensor data and a second frame of the sensor data, calculating an incremental phase shift of the reflected light relative to the transmitted light based on a linear relationship between the first frame and the second frame in relation to the general phase shift, and combining the general phase shift with the incremental phase shift to determine an actual phase shift of the reflected light relative to the transmitted light.
17 CN106970390B
一种测定地下可伸缩中空机构伸缩位移的方法及装置
Valid
Publication/Patent Number: CN106970390B Publication Date: 2020-10-02 Application Number: 201710252083.7 Filing Date: 2017-04-17 Inventor: 陈光富   张国栋   谢强   Assignee: 三峡大学   IPC: G01S17/32 Abstract: 一种测定地下可伸缩中空机构伸缩位移的装置,包括PC终端、地上模块、地下模块。PC终端连接地上模块,地上模块与地下模块通讯连接,地下模块安装在可伸缩中空机构内。所述PC终端和地上模块共同实现发射信号的控制、调制;接收信号的调理、混频滤波、采集处理、测距显示。所述地下模块与可伸缩中空机构同步伸缩,位移测定时实现信号激光发射、接收和光电转换。本发明一种测定地下可伸缩中空机构伸缩位移的方法及装置,实现在地上控制测知地下可伸缩机构的伸缩位移,实时监测伸缩机构的工作状态,为工程施工安全和质量评价提供有效数据。
18 CN111308487A
一种适用于远距离测距的SPAD阵列
Under Examination
Publication/Patent Number: CN111308487A Publication Date: 2020-06-19 Application Number: 202010107588.6 Filing Date: 2020-02-21 Inventor: 闫锋   杨雄   毛成   孔祥顺   Assignee: 南京大学   IPC: G01S17/32 Abstract: 本发明公开了一种适用于远距离测距的SPAD阵列。该阵列包括由多个SPAD探测单元组成的m×n的SPAD探测阵列、D触发器电路以及数字逻辑运算电路,数字逻辑运算电路包括全加器和半加器;SPAD探测单元的输出端与D触发器电路连接,D触发器电路用于将SPAD探测单元输出信号进行时钟同步;D触发器的输出端连接多级全加器和半加器;数字逻辑运算电路将多个SPAD探测单元输出的数字信号进行累加,最终在一个时钟周期内输出一个取值范围在“0~m×n”的二进制数以表征发生响应的SPAD探测单元个数。本发明的SPAD阵列,其信号输出电路完全数字化,电路结构简单,有利于片上集成,可用于高精度远距离测距。
19 US2020292680A1
TECHNIQUE FOR REDUCING IMPACT OF BACKSCATTER IN COHERENT LASER DETECTION AND RANGING (LADAR) SYSTEMS
Publication/Patent Number: US2020292680A1 Publication Date: 2020-09-17 Application Number: 16/355,346 Filing Date: 2019-03-15 Inventor: Coda, Robert J.   Assignee: Raytheon Company   IPC: G01S7/491 Abstract: A method includes generating a transmit beam in different intervals of time and directing the transmit beam towards an area or object of interest. The method also includes receiving a receive beam that includes the transmit beam as reflected from the area or object of interest. The method further includes generating local oscillator (LO) laser light. The transmit beam and the LO laser light are frequency-shifted such that the transmit beam has a higher frequency than the LO laser light in a first subset of the intervals and a lower frequency than the LO laser light in a second subset of the intervals. In addition, the method includes processing the LO laser light and the receive beam to identify information about the area or object of interest.
20 CN110780310A
偏振分集双通道测速及测距相干激光雷达测量方法及装置
Valid
Title (English): Polarization diversity dual channel speed measurement and ranging coherent lidar measurement method and device
Publication/Patent Number: CN110780310A Publication Date: 2020-02-11 Application Number: 201911410110.4 Filing Date: 2019-12-31 Inventor: 职亚楠   孙建锋   潘卫清   田克汉   戴恩文   Assignee: 杭州爱莱达科技有限公司   IPC: G01S17/32 Abstract: 本发明公开了一种偏振分集双通道测速及测距相干激光雷达测量方法及装置,本发明的激光光源输出光束经第一偏振分束器分为正交偏振的测速光束和测距光束;所述测速光束采用正交解调相干零差多普勒激光测速;测距光束采用伪随机码高速相位调制激光测距;本发明通过偏振分集,实现对远距离目标速度和距离的高精度同步测量。本发明不仅可以对目标同步测速测距,具有非常优秀的测速、测距精准性,而且整体系统小型化,运行容易,具有良好的发展前景。