Country
Full text data for US and EP
Status
Type
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC
No.
Publication Number
Title
Publication/Patent Number Publication/Patent Number
Publication date Publication date
Application number Application number
Filing date Filing date
Inventor Inventor
Assignee Assignee
IPC IPC
1
BR9917095B1
Publication/Patent Number: BR9917095B1
Publication date: 2009-12-01
Application number: 9917095
Filing date: 1999-10-14
Inventor: Mccullough, Kevin A  
Abstract: Patente de Invenção: 'MATERIAL COMPóSITOTERMICAMENTE CONDUTIVO'. Uma composição moldávelcondutiva (100)
2
US20040182549A1
Publication/Patent Number: US20040182549A1
Publication date: 2004-09-23
Application number: 10/767,185
Filing date: 2004-01-29
Inventor: Mccullough, Kevin A.  
Abstract: A novel visible light curable composition for forming a thermally conductive interface and a method of using the same is provided. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The thermal interface is bonded to the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted. A novel visible light curable composition for forming a thermally conductive interface and a method of using the same is provided. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a ...more ...less
3
US20040229035A1
Publication/Patent Number: US20040229035A1
Publication date: 2004-11-18
Application number: 10/870,629
Filing date: 2004-06-17
Abstract: The present invention relates to thermally conductive, elastomeric pads. The pads can be made by injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices. The present invention relates to thermally conductive, elastomeric pads. The pads can be made by injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive ...more ...less
4
US20040226707A1
Publication/Patent Number: US20040226707A1
Publication date: 2004-11-18
Application number: 10/850,540
Filing date: 2004-05-20
Abstract: The present invention discloses method of manufacturing a net-shape molded elastomeric heat-dissipating device that includes an integrally formed conformable interface surface. A base elastomeric matrix material is loaded with thermally conductive filler and injected into a mold cavity to form the completed device. Further, a layer of thermally conductive pressure sensitive adhesive material is applied to the conformable interface surface to allow the device to be securely fastened to a heat-generating surface. The present invention provides superior sealing and elimination of voids and air gaps that are typically found between the thermal transfer surfaces thereby facilitating enhanced thermal transfer properties. The present invention discloses method of manufacturing a net-shape molded elastomeric heat-dissipating device that includes an integrally formed conformable interface surface. A base elastomeric matrix material is loaded with thermally conductive filler and injected into a mold ...more ...less
7
US20030056938A1
Publication/Patent Number: US20030056938A1
Publication date: 2003-03-27
Application number: 10/288,027
Filing date: 2002-11-05
Inventor: Mccullough, Kevin A.  
Abstract: A net-shape molded heat sink is provided which includes a thermally conductive main body and a number of thermally conductive fins integrally connected to and emanating from the main body. The heat sink is formed by overmolding a carbon-carbon matrix core plate with a thermally conductive polymer composition that is filled with thermally conductive filler material. The molded heat sink is freely convecting through the part which makes it more efficient and has an optimal thermal configuration. A net-shape molded heat sink is provided which includes a thermally conductive main body and a number of thermally conductive fins integrally connected to and emanating from the main body. The heat sink is formed by overmolding a carbon-carbon matrix core plate with a thermally ...more ...less
8
US20030011066A1
Publication/Patent Number: US20030011066A1
Publication date: 2003-01-16
Application number: 09/904,050
Filing date: 2001-07-12
Inventor: Mccullough, Kevin A.  
Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted. The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation ...more ...less
9
US20030041442A1
Publication/Patent Number: US20030041442A1
Publication date: 2003-03-06
Application number: 10/224,161
Filing date: 2002-08-20
Inventor: Mccullough, Kevin A.  
Abstract: The present invention discloses a method of providing an integral thermal interface on an interface surface of a heat dissipation device, such as a heat sink. In accordance with the present invention, the phase change material is applied directly onto the interface surface of the heat sink to form an integral interface layer directly on the heat sink during the manufacturing process. This process includes the steps of providing a heat dissipating device having an interface surface, liquefying the phase change material at a controlled temperature so as to decrease the material viscosity to a flowable form, applying the liquefied phase change material directly onto the mating surface of the heat dissipating device either by directly dispensing the material, screen printing or stencil printing and cooling the material causing it to cure on the surface of the heat dissipating device. The present invention discloses a method of providing an integral thermal interface on an interface surface of a heat dissipation device, such as a heat sink. In accordance with the present invention, the phase change material is applied directly onto the interface surface of ...more ...less
10
US20030067055A1
Publication/Patent Number: US20030067055A1
Publication date: 2003-04-10
Application number: 10/287,232
Filing date: 2002-11-04
Inventor: Mccullough, Kevin A.  
Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted. The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation ...more ...less
11
US20030057547A1
Publication/Patent Number: US20030057547A1
Publication date: 2003-03-27
Application number: 10/287,194
Filing date: 2002-11-04
Inventor: Mccullough, Kevin A.  
Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted. The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation ...more ...less
12
US20030038393A1
Publication/Patent Number: US20030038393A1
Publication date: 2003-02-27
Application number: 10/225,632
Filing date: 2002-08-22
Abstract: The present invention relates to a method of manufacturing a thermally conductive article having an integrated thermally conductive surface. The method involves molding a first thermally conductive composition to form a body of the article and then molding a second thermally conductive composition to form an integrated surface on the body of the article. The integrated thermally conductive surface can interface with a heat-generating device (e.g., an electronic part) to dissipate heat from the device. The invention also encompasses thermally conductive articles produced by this method. The present invention relates to a method of manufacturing a thermally conductive article having an integrated thermally conductive surface. The method involves molding a first thermally conductive composition to form a body of the article and then molding a second thermally ...more ...less
13
US20030102118A1
Publication/Patent Number: US20030102118A1
Publication date: 2003-06-05
Application number: 09/774,519
Filing date: 2001-01-31
Abstract: The present invention discloses a heat pipe construction that includes a heat pipe with phase change media therein with a conductive composition molded about the heat pipe. The thermally conductive composition absorbs or reflects electro magnetic interference waves and prevents their transmission into and through the heat pipe to the electronic components being cooled by the heat pipe. The present invention discloses a heat pipe construction that includes a heat pipe with phase change media therein with a conductive composition molded about the heat pipe. The thermally conductive composition absorbs or reflects electro magnetic interference waves and prevents ...more ...less
14
US20030040563A1
Publication/Patent Number: US20030040563A1
Publication date: 2003-02-27
Application number: 10/225,502
Filing date: 2002-08-22
Abstract: This invention relates to a thermally conductive molding composition having a thermal conductivity greater than 3 W/m° K. The composition consists essentially of: a) 30% to 60% of a polymer matrix; b) 25% to 60% of boron nitride; and c) 25% to 60% of alumina. The boron nitride and alumina are dispersed throughout the polymer matrix. The composition can be molded or cast into a variety of articles such as packaging materials for semiconductor devices. This invention relates to a thermally conductive molding composition having a thermal conductivity greater than 3 W/m° K. The composition consists essentially of: a) 30% to 60% of a polymer matrix; b) 25% to 60% of boron nitride; and c) 25% to 60% of alumina. The boron ...more ...less
15
US20030019103A1
Publication/Patent Number: US20030019103A1
Publication date: 2003-01-30
Application number: 10/123,363
Filing date: 2002-04-16
Abstract: The present invention discloses a method of constructing a heat pipe that includes providing a heat pipe with phase change media therein and injection overmolding the heat pipe with a conductive composition. The thermally conductive composition absorbs or reflects electro magnetic interference waves and prevents their transmission into and through the heat pipe to the electronic components being cooled by the heat pipe. The present invention discloses a method of constructing a heat pipe that includes providing a heat pipe with phase change media therein and injection overmolding the heat pipe with a conductive composition. The thermally conductive composition absorbs or reflects electro ...more ...less
16
US20030236335A1
Publication/Patent Number: US20030236335A1
Publication date: 2003-12-25
Application number: 10/436,403
Filing date: 2003-05-12
Abstract: A thermally-conductive plastic substrate for supporting electronic circuits is provided. The substrate has a relatively low dielectric constant and good mechanical strength. The substrate is made from a polymer composition comprising a base polymer matrix and a thermally-conductive, electrically-insulating material. The composition can comprise polyphenylene sulfide and boron nitride. The composition can further comprise a reinforcing material such as glass. The invention also encompasses methods for making such substrates. A thermally-conductive plastic substrate for supporting electronic circuits is provided. The substrate has a relatively low dielectric constant and good mechanical strength. The substrate is made from a polymer composition comprising a base polymer matrix and a ...more ...less
17
US20030220432A1
Publication/Patent Number: US20030220432A1
Publication date: 2003-11-27
Application number: 10/408,939
Filing date: 2003-04-08
Abstract: A thermoplastic, thermally-conductive composition is provided. The composition comprises a base thermoplastic elastomer matrix, thermally-conductive filler material, and temperature-activated phase change material. The composition can be used to make shaped, thermally-conductive articles. The articles can be used as thermal interfaces for dissipating heat from heat-generating devices such as electronic parts. The articles can have good electrical conductivity. A thermoplastic, thermally-conductive composition is provided. The composition comprises a base thermoplastic elastomer matrix, thermally-conductive filler material, and temperature-activated phase change material. The composition can be used to make shaped, thermally-conductive ...more ...less
18
US20030044631A1
Publication/Patent Number: US20030044631A1
Publication date: 2003-03-06
Application number: 10/225,924
Filing date: 2002-08-22
Abstract: The present invention relates to thermally conductive, elastomeric pads and methods for manufacturing such pads. The methods involve injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices. The present invention relates to thermally conductive, elastomeric pads and methods for manufacturing such pads. The methods involve injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by ...more ...less
19
US20030043586A1
Publication/Patent Number: US20030043586A1
Publication date: 2003-03-06
Application number: 10/229,557
Filing date: 2002-08-28
Abstract: A thermally conductive lamp reflector is provided that dissipates heat from a light source within the reflector. The reflector assembly includes a shell having a metallized layer on its surface. The shell is made from a composition including about 30% to about 80% by volume of a base polymer matrix and about 20% to about 70% by volume of a thermally conductive filler material. The reflector has a thermal conductivity of greater than 3 W/m° K and preferably greater than 22 W/m° K. The reflectors can be used in automotive headlamps, flashlights, and other lighting fixtures. A method of forming the lamp reflector is also provided. A thermally conductive lamp reflector is provided that dissipates heat from a light source within the reflector. The reflector assembly includes a shell having a metallized layer on its surface. The shell is made from a composition including about 30% to about 80% by volume of a ...more ...less
20
US20020065350A1
Publication/Patent Number: US20020065350A1
Publication date: 2002-05-30
Application number: 09/726,145
Filing date: 2000-11-29
Inventor: Mccullough, Kevin A.  
Abstract: A method of molding an evenly colored, thermally conductive composition. Thermally conductive filler material is colored and mixed with a base polymer matrix. The mixture is molded into the desired shape. The step of for coloring the filler material is tailored to the type of thermally conductive filler used and could include, as required, anodizing, spraying or dying of the material before mixing with the base polymer matrix and prior to molding. A method of molding an evenly colored, thermally conductive composition. Thermally conductive filler material is colored and mixed with a base polymer matrix. The mixture is molded into the desired shape. The step of for coloring the filler material is tailored to the type of ...more ...less