Country
Full text data for US and EP
Status
Type
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC
No.
Publication Number
Title
Publication/Patent Number Publication/Patent Number
Publication date Publication date
Application number Application number
Filing date Filing date
Inventor Inventor
Assignee Assignee
IPC IPC
1
US10190421B2
Publication/Patent Number: US10190421B2
Publication date: 2019-01-29
Application number: 15/019,487
Filing date: 2016-02-09
Abstract: Various embodiments of the invention include turbine buckets and systems employing such buckets. Various particular embodiments include a turbine bucket having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the pressure side and the suction side; and a trailing edge opposing the leading edge and spanning between the pressure side and the suction side; a base connected with a first end of the airfoil along the suction side, pressure side, trailing edge and the leading edge; and a tip shroud connected with a second end of the airfoil along the suction side, pressure side, trailing edge and the leading edge, the tip shroud including a tip shroud fillet connecting the airfoil and the tip shroud and having a non-uniform thickness across an axial length of the airfoil. Various embodiments of the invention include turbine buckets and systems employing such buckets. Various particular embodiments include a turbine bucket having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the ...more ...less
2
US10267320B2
Publication/Patent Number: US10267320B2
Publication date: 2019-04-23
Application number: 15/334,467
Filing date: 2016-10-26
Abstract: A double-ended blower includes a blower motor assembly supporting opposed first and second shaft ends. The first and second shaft ends have respective first and second impellers attached thereto and enclosed within first and second volutes, respectively. The first volute is connected to an inlet and the second volute is connected to an outlet. The blower motor assembly is supported in a chassis enclosure and a radially outer inter-stage path is between the first and second volute. The second volute is at least partially substantially concentrically nested with the radially outer inter-stage gas path. A double-ended blower includes a blower motor assembly supporting opposed first and second shaft ends. The first and second shaft ends have respective first and second impellers attached thereto and enclosed within first and second volutes, respectively. The first volute is ...more ...less
3
US10309230B2
Publication/Patent Number: US10309230B2
Publication date: 2019-06-04
Application number: 14/773,945
Filing date: 2013-12-30
Inventor: Mccaffrey, Michael G  
Abstract: A co-formed element includes a core structure which has a root portion and is formed from a high thermal conductivity ceramic matrix composite material, and a low thermal conductivity layer co-formed with the core structure and surrounding the root portion of the core structure. A co-formed element includes a core structure which has a root portion and is formed from a high thermal conductivity ceramic matrix composite material, and a low thermal conductivity layer co-formed with the core structure and surrounding the root portion of the core structure. ...more ...less
4
US10253638B2
Publication/Patent Number: US10253638B2
Publication date: 2019-04-09
Application number: 14/824,953
Filing date: 2015-08-12
Abstract: Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine blade, and the pressure side portion has a greater surface area than the suction side portion. Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine ...more ...less
5
US10370987B2
Publication/Patent Number: US10370987B2
Publication date: 2019-08-06
Application number: 15/124,563
Filing date: 2015-04-02
Inventor: Sakamoto, Yasuro  
Abstract: A blade or vane row including a plurality of blade or vane segments (10), each including a blade or vane body (11), being disposed in a rotational direction to form an annular shape and defining a flow path (R) along which working fluid (G) flows. The blade or vane segments (10) each have an end wall portion (12, 13) that faces the flow path (R) and extends in a rotational direction. The blade or vane body extends from the end wall portion, and the blade or vane body is disposed in the flow path (R). Surfaces (15A, 15B) of the end wall portion (12, 13) in the rotational direction each include an inclined portion (16). The inclined portion is inclined so as to extend to a flow path (R) side and downstream in a turn direction of the working fluid (G) that flows along the flow path (R). A blade or vane row including a plurality of blade or vane segments (10), each including a blade or vane body (11), being disposed in a rotational direction to form an annular shape and defining a flow path (R) along which working fluid (G) flows. The blade or vane segments (10) ...more ...less
6
US10247023B2
Publication/Patent Number: US10247023B2
Publication date: 2019-04-02
Application number: 14/429,089
Filing date: 2013-03-14
Abstract: A seal damper system includes a plurality of circumferentially spaced blades that each include a platform and an airfoil that extends radially outwardly from the platform. A pocket is arranged circumferentially intermediate the blades and radially inwardly of the platform. A seal damper is arranged in the pocket. The seal damper includes a base section that extends along an axial dimension from a first axial end to an opposing second axial end. The base section joins a first arm that extends radially inwardly from the first axial end and a second arm that extends radially inwardly from the second axial end. The first arm includes a free end having a pair of spaced apart shoulders. A seal damper system includes a plurality of circumferentially spaced blades that each include a platform and an airfoil that extends radially outwardly from the platform. A pocket is arranged circumferentially intermediate the blades and radially inwardly of the platform. A ...more ...less
7
US10267156B2
Publication/Patent Number: US10267156B2
Publication date: 2019-04-23
Application number: 14/290,076
Filing date: 2014-05-29
Abstract: A turbine bucket assembly and turbine system are disclosed. The turbine bucket assembly includes a single-lobe joint having an integral platform, the joint having a first axial length; a segmented airfoil having a root segment extending radially outward from the platform and a tip segment coupled to the root segment, the tip segment having a second axial length, which is less than the first axial length; and a turbine wheel defining a receptacle with a geometry corresponding to the single-lobe joint and being coupled to the single-lobe joint. The tip segment includes a tip segment material, the root segment includes a root segment material, and the turbine wheel includes a turbine wheel material, the root segment material and the turbine wheel material having a lower heat resistance and a higher thermal expansion than the tip segment material. A turbine bucket assembly and turbine system are disclosed. The turbine bucket assembly includes a single-lobe joint having an integral platform, the joint having a first axial length; a segmented airfoil having a root segment extending radially outward from the platform and a ...more ...less
8
US10316677B2
Publication/Patent Number: US10316677B2
Publication date: 2019-06-11
Application number: 15/094,187
Filing date: 2016-04-08
Inventor: Guemmer, Volker  
Abstract: A cover band assembly of a blade row of stator or rotor blades is provided. The cover band assembly comprises a blade row that is arranged inside a main flow path of a continuous-flow machine and has multiple blades which respectively have a front edge and a rear edge; and a cover band of the blade row that is at least partially embedded in a component or a component group as regarded in a longitudinal section of the continuous-flow machine, wherein a cavity is formed that surrounds the cover band and is connected to the main flow path by way of two cavity openings, wherein the front cavity opening is provided upstream of the front edge and the rear cavity opening is provided downstream of the rear edge of the blades of the blade row. Here, the cover band has a leading edge and a trailing edge. A cover band assembly of a blade row of stator or rotor blades is provided. The cover band assembly comprises a blade row that is arranged inside a main flow path of a continuous-flow machine and has multiple blades which respectively have a front edge and a rear edge; and a ...more ...less
9
US10323537B2
Publication/Patent Number: US10323537B2
Publication date: 2019-06-18
Application number: 15/205,781
Filing date: 2016-07-08
Inventor: Jung, Sungchul  
Abstract: The present disclosure relates to a tip clearance control assembly of a gas turbine including a casing, a plurality of blades, a labyrinth seal, and a shroud. The casing guides a flow of combustion gas. The plurality of blades is located inside the casing in such a manner as to be coupled to a rotary shaft of the gas turbine. The labyrinth seal is located at the front end portion of each blade. The shroud surrounds the front end portion of each blade. The casing includes an outer casing having dove tail slots and an inner ring segment having dove tail coupling portions, so that the dove tail coupling portions moves in an axial direction and a radial direction with respect to the gas turbine. The present disclosure relates to a tip clearance control assembly of a gas turbine including a casing, a plurality of blades, a labyrinth seal, and a shroud. The casing guides a flow of combustion gas. The plurality of blades is located inside the casing in such a manner as to ...more ...less
10
US10294804B2
Publication/Patent Number: US10294804B2
Publication date: 2019-05-21
Application number: 14/823,787
Filing date: 2015-08-11
Abstract: Dual alloy Gas Turbine Engine (GTE) rotors and method for producing GTE rotors are provided. In one embodiment, the method include includes arranging bladed pieces in an annular grouping or ring formation such that shank-to-shank junctions are formed between circumferentially-adjacent bladed pieces. A first or bonding alloy is deposited along the shank-to-shank junctions utilizing a localized fusion deposition process to produce a plurality of alloy-filled joints, which join the bladed pieces in a bonded blade ring. The bonding alloy is preferably selected to have a ductility higher than and a melt point lower than the alloy from which the bladed pieces are produced. After deposition of the first alloy and formation of the alloy-filled joints, a hub disk is inserted into the central opening of the bonded blade ring. The hub disk and blade ring are then bonded utilizing, for example, a Hot Isostatic Pressing process. Dual alloy Gas Turbine Engine (GTE) rotors and method for producing GTE rotors are provided. In one embodiment, the method include includes arranging bladed pieces in an annular grouping or ring formation such that shank-to-shank junctions are formed between ...more ...less
11
US10294862B2
Publication/Patent Number: US10294862B2
Publication date: 2019-05-21
Application number: 14/949,208
Filing date: 2015-11-23
Abstract: A turbine engine casing flow-path segment that is locally diffusing, followed by a flow-path segment contracting in the vicinity of a fan blade. This contraction accelerates the fluid flow axially forward of the fan blade leading edge at the tip and converges with the linear flow-path aft of the fan blade leading edge but forward of the fan blade trailing edge. More diffused fluid flow results in increased flow capacity of the fan, and increased fan efficiency. A turbine engine casing flow-path segment that is locally diffusing, followed by a flow-path segment contracting in the vicinity of a fan blade. This contraction accelerates the fluid flow axially forward of the fan blade leading edge at the tip and converges with the linear ...more ...less
12
US10378365B2
Publication/Patent Number: US10378365B2
Publication date: 2019-08-13
Application number: 14/238,626
Filing date: 2012-07-11
Abstract: Disclosed is a turbine rotor device for a gas turbine, the turbine rotor device comprising a turbine rotor body, and a pre-stressed fiber-wound layer, wherein the pre-stressed fiber-wound layer is wound on the periphery of the turbine rotor body to exert a predetermined pre-loading force on the turbine rotor body. Additionally, a rotor, and a gas turbine and a turbine engine having the turbine rotor device are also provided. Disclosed is a turbine rotor device for a gas turbine, the turbine rotor device comprising a turbine rotor body, and a pre-stressed fiber-wound layer, wherein the pre-stressed fiber-wound layer is wound on the periphery of the turbine rotor body to exert a predetermined ...more ...less
13
US10400611B2
Publication/Patent Number: US10400611B2
Publication date: 2019-09-03
Application number: 15/008,742
Filing date: 2016-01-28
Abstract: The invention relates to a blade for a turbomachine a shroud for such a blade, and a turbomachine having at least one such blade. The blade comprises a shroud which is positioned on the blade tip side of the blade and is stiffened in the region of its surface by means of a stiffening structure having at least one longitudinal stiffening element such as a rib. The height of the longitudinal stiffening element varies in the circumferential direction. The invention relates to a blade for a turbomachine a shroud for such a blade, and a turbomachine having at least one such blade. The blade comprises a shroud which is positioned on the blade tip side of the blade and is stiffened in the region of its surface by means of a ...more ...less
14
US2019093483A1
Publication/Patent Number: US2019093483A1
Publication date: 2019-03-28
Application number: 16/188,636
Filing date: 2018-11-13
Abstract: A method for producing one or more cooling holes in an airfoil for a gas turbine engine is disclosed. The method includes casting one or more hole starter bosses on a suction side, a pressure side, or both of the airfoil, drilling the one or more cooling holes into the airfoil by way of the one or more hole starter bosses, and removing the one or more hole starter bosses after drilling the one or more cooling holes into the airfoil. A method for producing one or more cooling holes in an airfoil for a gas turbine engine is disclosed. The method includes casting one or more hole starter bosses on a suction side, a pressure side, or both of the airfoil, drilling the one or more cooling holes into the airfoil ...more ...less
15
US2019153866A1
Publication/Patent Number: US2019153866A1
Publication date: 2019-05-23
Application number: 15/819,047
Filing date: 2017-11-21
Abstract: An exemplary gas turbine engine includes a turbine section and a fan mechanically connected to the turbine section such that rotation of the turbine drives rotation of the fan. The fan includes a hub, a plurality of blade bodies extending radially outward from the hub to a first partial shroud, and a plurality of blade tips extending radially outward from the partial shroud. An exemplary gas turbine engine includes a turbine section and a fan mechanically connected to the turbine section such that rotation of the turbine drives rotation of the fan. The fan includes a hub, a plurality of blade bodies extending radially outward from the hub to a first ...more ...less
16
US2019063232A1
Publication/Patent Number: US2019063232A1
Publication date: 2019-02-28
Application number: 15/683,332
Filing date: 2017-08-22
Abstract: A turbomachinery component with a surface that includes a bounded wear coat, the component includes: a body; a contact surface defined by the body; a recess extending into the body and communicating with the contact surface; and a wear coat positioned in the recess.
17
US2019078447A1
Publication/Patent Number: US2019078447A1
Publication date: 2019-03-14
Application number: 16/082,874
Filing date: 2017-03-06
Abstract: In a turbine rotor blade assembly 1 of the present invention, each turbine rotor blade 10 includes a platform 11 having a blade root 12 fixed to a turbine disk 30, a profile 13 rising from the platform 11, and a shroud 14 provided at a top end of the profile 13. The shroud 14 of the present invention includes a first contact end part 15 that comes into contact with an adjacent shroud adjacent to one end side in a circumferential direction, a second contact end part 16 that comes into contact with an another adjacent shroud adjacent to the other end side in the circumferential direction, and a main body part disposed between the first and second contact end parts 15 and 16. One or both of the first and second contact end parts 15 and 16 are lower in rigidity than the main body part. In a turbine rotor blade assembly 1 of the present invention, each turbine rotor blade 10 includes a platform 11 having a blade root 12 fixed to a turbine disk 30, a profile 13 rising from the platform 11, and a shroud 14 provided at a top end of the profile 13. The shroud 14 of ...more ...less