Country
Full text data for US and EP
Status
Type
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC
No.
Publication Number
Title
Publication/Patent Number Publication/Patent Number
Publication date Publication date
Application number Application number
Filing date Filing date
Inventor Inventor
Assignee Assignee
IPC IPC
1
US10209206B2
Publication/Patent Number: US10209206B2
Publication date: 2019-02-19
Application number: 14/903,629
Filing date: 2014-07-08
Abstract: A control system is presented for use in measuring one or more parameters of a sample. The control system comprises an input utility and a processor utility. The input utility is configured for receiving input data including first data comprising X-ray Diffraction or High-Resolution X-ray Diffraction (XRD) response data of the sample indicative of a material distribution in the sample, and second data comprising optical response data of the sample to incident light indicative of at least a geometry of the sample. The processor utility is configured and operable for processing and analyzing one of the first and second data for optimizing the other one of the first and second data, and utilizing the optimized data for determining said one or more parameters of the sample including a strain distribution in the sample. A control system is presented for use in measuring one or more parameters of a sample. The control system comprises an input utility and a processor utility. The input utility is configured for receiving input data including first data comprising X-ray Diffraction or ...more ...less
2
US10272418B2
Publication/Patent Number: US10272418B2
Publication date: 2019-04-30
Application number: 15/670,686
Filing date: 2017-08-07
Inventor: Pilyugina, Tatiana  
Abstract: Methods for producing mesoporous zeolites are provided. In some embodiments, the method includes mixing a silicon-containing material, an aluminum-containing material, or both, with a quaternary amine and at least one base to produce a zeolite precursor solution. The zeolite precursor solution is combined with nanocellulose to form a zeolite precursor gel, from which volatiles are removed. The zeolite precursor gel is crystallized to produce a crystalline zeolite intermediate. The crystalline zeolite intermediate is calcined to form the mesoporous zeolite. The nanocellulose mesopores template may include cellulose nanocrystals, nanocellulose fibers, or combinations thereof. The quaternary amine may include tetraethylammonium hydroxide, tetraethylamonnium alkoxide, tetrapropylammonium alkoxide, other alkaline materials comprising ammonium, or combinations thereof. Methods for producing mesoporous zeolites are provided. In some embodiments, the method includes mixing a silicon-containing material, an aluminum-containing material, or both, with a quaternary amine and at least one base to produce a zeolite precursor solution. The zeolite ...more ...less
3
US10283229B2
Publication/Patent Number: US10283229B2
Publication date: 2019-05-07
Application number: 15/428,262
Filing date: 2017-02-09
Abstract: A high-aspect ratio structure production method and an ultrasonic probe production method of the present invention include: forming, in a principal surface of a substrate, a plurality of pores each extending in a direction intersecting the principal surface; plugging, among the plurality of pores, one or more pores formed in a first region; and forming a recess in a second region by a wet etching process. A high-aspect ratio structure includes a grating having a plurality of convex portions, wherein each of the plurality of convex portions is provided with a plugging member plugging a plurality of pores formed therein in a thickness direction of the structure. A high-aspect ratio structure production method and an ultrasonic probe production method of the present invention include: forming, in a principal surface of a substrate, a plurality of pores each extending in a direction intersecting the principal surface; plugging, among the ...more ...less
4
US10309912B2
Publication/Patent Number: US10309912B2
Publication date: 2019-06-04
Application number: 15/919,496
Filing date: 2018-03-13
Abstract: Methods and apparatus are provided for performing back-reflection energy-dispersive X-ray diffraction (XRD). This exhibits extremely low sensitivity to the morphology of the sample under investigation. As a consequence of this insensitivity, unprepared samples can be analyzed using this method. For example, in a geological context, whole rock samples become amenable to analysis. A composite diffraction spectrum can be produced using information from different recorded spectra in different energy sub-ranges. The composite spectrum excludes fluorescence signals that would otherwise obscure the diffraction signals. Methods and apparatus are provided for performing back-reflection energy-dispersive X-ray diffraction (XRD). This exhibits extremely low sensitivity to the morphology of the sample under investigation. As a consequence of this insensitivity, unprepared samples can be analyzed ...more ...less
5
US10295481B2
Publication/Patent Number: US10295481B2
Publication date: 2019-05-21
Application number: 15/262,894
Filing date: 2016-09-12
Abstract: The present disclosure relates to detection systems and methods. One illustrative detection system may include a distributed radiation source having a plurality of radiation source focus points, which irradiate an object under detection, wherein the plurality of radiation source focus points are divided into a certain number of groups, and a primary collimator that limits rays of each of the radiation source focus points such that the rays emit into an XRD detection device. An XRD detection device may include a plurality of XRD detectors that are divided into the same number of groups as the radiation source focus points, wherein XRD detectors in a same group are arranged to be separated by XRD detectors in other groups, and rays of each of the radiation source focus points are received by XRD detectors having the same group number as the group number of the radiation source focus point. The present disclosure relates to detection systems and methods. One illustrative detection system may include a distributed radiation source having a plurality of radiation source focus points, which irradiate an object under detection, wherein the plurality of radiation source ...more ...less
6
US10295483B2
Publication/Patent Number: US10295483B2
Publication date: 2019-05-21
Application number: 14/588,732
Filing date: 2015-01-02
Inventor: Morton, Edward James  
Abstract: An X-ray imaging inspection system for inspecting items comprises an X-ray source 10 extending around an imaging volume 16, and defining a plurality of source points 14 from which X-rays can be directed through the imaging volume. An X-ray detector array 12 also extends around the imaging volume 16 and is arranged to detect X-rays from the source points which have passed through the imaging volume, and to produce output signals dependent on the detected X-rays. A conveyor 20 is arranged to convey the items through the imaging volume 16. An X-ray imaging inspection system for inspecting items comprises an X-ray source 10 extending around an imaging volume 16, and defining a plurality of source points 14 from which X-rays can be directed through the imaging volume. An X-ray detector array 12 also extends around ...more ...less
7
US10371649B2
Publication/Patent Number: US10371649B2
Publication date: 2019-08-06
Application number: 15/491,161
Filing date: 2017-04-19
Abstract: A radiation phase change detection method includes: arranging a two-dimensional optical image pickup element, which includes a scintillator, so that, when a period of a self-image generated through a phase grating is defined as D1, and a pixel pitch of the two-dimensional optical image pickup element is defined as D2=kD1, k falls in a range of ½<k≤3/2, and so that interference fringes formed by D1 and D2 depending on a relationship in arrangement of the two-dimensional optical image pickup element with respect to the self-image have a period of 2 times D2 or more and 100 times D2 or less; acquiring images of the interference fringes before and after insertion of an object; and outputting an image on a phase change of the radiation caused by at least the object. A radiation phase change detection method includes: arranging a two-dimensional optical image pickup element, which includes a scintillator, so that, when a period of a self-image generated through a phase grating is defined as D1, and a pixel pitch of the two-dimensional ...more ...less
8
US2019041400A1
Publication/Patent Number: US2019041400A1
Publication date: 2019-02-07
Application number: 16/045,879
Filing date: 2018-07-26
Abstract: The present invention relates to the field of GPCR structure biology and signaling. In particular, the present invention relates to protein binding domains directed against or capable of specifically binding to a functional conformational state of a G-protein-coupled receptor (GPCR). More specifically, the present invention provides protein binding domains that are capable of increasing the stability of a functional conformational state of a GPCR, in particular, increasing the stability of a GPCR in its active conformational state. The protein binding domains of the present invention can be used as a tool for the structural and functional characterization of G-protein-coupled receptors bound to various natural and synthetic ligands, as well as for screening and drug discovery efforts targeting GPCRs. Moreover, the invention also encompasses the diagnostic, prognostic and therapeutic usefulness of these protein binding domains for GPCR-related diseases. The present invention relates to the field of GPCR structure biology and signaling. In particular, the present invention relates to protein binding domains directed against or capable of specifically binding to a functional conformational state of a G-protein-coupled receptor ...more ...less
9
US2019025232A1
Publication/Patent Number: US2019025232A1
Publication date: 2019-01-24
Application number: 16/033,739
Filing date: 2018-07-12
Abstract: This X-ray phase imaging apparatus is provided with a control unit that acquires information on a defect of a material based on a dark field image of the material.
10
US2019170666A1
Publication/Patent Number: US2019170666A1
Publication date: 2019-06-06
Application number: 16/205,766
Filing date: 2018-11-30
Abstract: An X-ray imaging system includes: an X-ray Talbot imaging device that has an object table, an X-ray source, a plurality of gratings, and an X-ray detector, and irradiates the X-ray detector with an X-ray from the X-ray source through an object and the plurality of gratings to acquire a moiré image necessary for generation of a reconstructed image of the object; and a tester that is installed on the object table, holds the object, and loads a tensile load or a compressive load on the object, wherein the X-ray Talbot imaging device includes a hardware processor that causes a series of imaging to be performed to acquire the moiré image, the tester includes: a base part; and a chuck, and an operation of the chuck is automatically controllable by the hardware processor in conjunction with the X-ray Talbot imaging device. An X-ray imaging system includes: an X-ray Talbot imaging device that has an object table, an X-ray source, a plurality of gratings, and an X-ray detector, and irradiates the X-ray detector with an X-ray from the X-ray source through an object and the plurality of gratings to ...more ...less
11
US2019077942A1
Publication/Patent Number: US2019077942A1
Publication date: 2019-03-14
Application number: 16/130,373
Filing date: 2018-09-13
Abstract: Methods of preparing high-density polyethylene (HDPE) nanocomposites by in situ polymerization with a zirconocene catalyst, a methylaluminoxane cocatalyst, a calcium zirconate nanofiller in a solvent. The calcium zirconate nanofiller, which is dispersed across the polyethylene matrix, is found to enhance catalyst activity, and other properties of the HDPE nanocomposites produced, including but not limited to flame retardency, crystallinity and surface morphology. Methods of preparing high-density polyethylene (HDPE) nanocomposites by in situ polymerization with a zirconocene catalyst, a methylaluminoxane cocatalyst, a calcium zirconate nanofiller in a solvent. The calcium zirconate nanofiller, which is dispersed across the polyethylene ...more ...less
12
EP3431971A1
Publication/Patent Number: EP3431971A1
Publication date: 2019-01-23
Application number: 18181911.1
Filing date: 2018-07-05
Abstract: This X-ray phase imaging apparatus (100) is provided with a control unit (6b) that acquires information on a defect of a material based on a dark field image of the material (T).
13
EP3513177A1
Publication/Patent Number: EP3513177A1
Publication date: 2019-07-24
Application number: 17851607.6
Filing date: 2017-09-15
14
EP3470827A2
Publication/Patent Number: EP3470827A2
Publication date: 2019-04-17
Application number: 18198983.1
Filing date: 2018-10-05
Inventor: Hoenes, Katja  
Abstract: In an embodiment, a method for determining the concentration of an element of a heteroepitaxial layer includes generating a reciprocal space map in Qz and Qx directions in a portion of reciprocal space describing positions of diffracted X-ray peaks of a heteroepitaxial layer and of a substrate on which the heteroepitaxial layer is positioned, determining the position of a diffracted X-ray peak of the substrate in the reciprocal space map in the Qx direction, determining the expected position of the diffracted X-ray peak of the heteroepitaxial layer in the Qx direction based on the determined position of the diffracted X-ray peak of the substrate in the Qx direction, generating a scan of the heteroepitaxial layer in a Qz direction at the expected position in the Qx direction, and determining the concentration of a constituent element of the heteroepitaxial layer based on the scan. In an embodiment, a method for determining the concentration of an element of a heteroepitaxial layer includes generating a reciprocal space map in Qz and Qx directions in a portion of reciprocal space describing positions of diffracted X-ray peaks of a heteroepitaxial layer and ...more ...less