Country
Full text data for US and EP
Status
Type
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC
No.
Publication Number
Title
Publication/Patent Number Publication/Patent Number
Publication date Publication date
Application number Application number
Filing date Filing date
Inventor Inventor
Assignee Assignee
IPC IPC
1
US10283527B2
Publication/Patent Number: US10283527B2
Publication date: 2019-05-07
Application number: 15/917,607
Filing date: 2018-03-10
Inventor: Yamamoto, Yoshiki  
Abstract: An SOI substrate having a semiconductor substrate, an insulating layer formed on the semiconductor substrate, and a semiconductor layer formed on the insulating layer is provided. A first region is one for forming a low breakdown voltage MISFET in the semiconductor layer, and a second region, in which the insulating layer and the semiconductor layer have been removed, is one for forming a high breakdown voltage MISFET. After an n-type semiconductor region is formed in the second region and an n-type extension region is formed in the first region, a first heat treatment is performed on the semiconductor substrate. Thereafter, a diffusion layer is formed in each of the first and second regions, and then a second heat treatment is performed on the semiconductor substrate. Herein, the time for which the first heat treatment is performed is longer than the time for which the second heat treatment is performed. An SOI substrate having a semiconductor substrate, an insulating layer formed on the semiconductor substrate, and a semiconductor layer formed on the insulating layer is provided. A first region is one for forming a low breakdown voltage MISFET in the semiconductor layer, and a ...more ...less
2
US10249529B2
Publication/Patent Number: US10249529B2
Publication date: 2019-04-02
Application number: 14/969,670
Filing date: 2015-12-15
Abstract: A method of making a channel region in a semiconductor device includes providing a substrate having a first transistor area arranged adjacent to a second transistor area; growing an epitaxial layer on the second transistor area of the substrate; forming a trench in the substrate between the first transistor area and the second transistor area; performing a condensation technique to thermally mix materials of the epitaxial layer and the substrate; and filling the trench with a dielectric material to form a shallow trench isolation region between a first channel region of the first transistor and a second channel region of the second transistor; wherein performing the condensation technique is performed after forming the trench. A method of making a channel region in a semiconductor device includes providing a substrate having a first transistor area arranged adjacent to a second transistor area; growing an epitaxial layer on the second transistor area of the substrate; forming a trench in the substrate ...more ...less
3
US10243066B2
Publication/Patent Number: US10243066B2
Publication date: 2019-03-26
Application number: 15/589,352
Filing date: 2017-05-08
Abstract: A method of producing a semiconductor device is presented. The method comprises: providing a semiconductor substrate having a surface; epitaxially growing, along a vertical direction (Z) perpendicular to the surface, a back side emitter layer on top of the surface, wherein the back side emitter layer has dopants of a first conductivity type or dopants of a second conductivity type complementary to the first conductivity type; epitaxially growing, along the vertical direction (Z), a drift layer having dopants of the first conductivity type above the back side emitter layer, wherein a dopant concentration of the back side emitter layer is higher than a dopant concentration of the drift layer; and creating, either within or on top of the drift layer, a body region having dopants of the second conductivity type, a transition between the body region and the drift layer forming a pn-junction (Zpn). Epitaxially growing the drift layer includes creating, within the drift layer, a dopant concentration profile (P) of dopants of the first conductivity type along the vertical direction (Z), the dopant concentration profile (P) in the drift layer exhibiting a variation of a concentration of dopants of the first conductivity type along the vertical direction (Z). A method of producing a semiconductor device is presented. The method comprises: providing a semiconductor substrate having a surface; epitaxially growing, along a vertical direction (Z) perpendicular to the surface, a back side emitter layer on top of the surface, wherein the ...more ...less
4
US10243076B2
Publication/Patent Number: US10243076B2
Publication date: 2019-03-26
Application number: 15/809,024
Filing date: 2017-11-10
Abstract: Disclosed is a graphene-based ternary barristor using a Schottky junction graphene semiconductor. A graphene channel layer is doped with N-type and N-type dopants to have two different Fermi levels and form a PN junction. Accordingly, a voltage is applied to a gate electrode layer to move the Fermi levels of the graphene channel layer and adjust the height of the Schottky barrier, thus generating current. Also, the height of the Schottky barrier is adjusted depending on the doping concentration of the graphene channel That is, the height of the Schottky barrier is changed depending on the applied gate voltage, and thus the flow of current is changed. Also, it is possible to adjust the height of the Schottky barrier by adjusting the doping concentration of the graphene channel. Accordingly, since the graphene-based ternary barristor has a high current ratio by adjusting a gate voltage, the graphene-based ternary barristor may be applied to a logic circuit. Disclosed is a graphene-based ternary barristor using a Schottky junction graphene semiconductor. A graphene channel layer is doped with N-type and N-type dopants to have two different Fermi levels and form a PN junction. Accordingly, a voltage is applied to a gate electrode ...more ...less
5
US10262982B2
Publication/Patent Number: US10262982B2
Publication date: 2019-04-16
Application number: 15/785,447
Filing date: 2017-10-17
Abstract: The present invention provides an integrated circuit with a standard cell of an inverter. The integrated circuit includes: a first metal line and a second metal line stretching along a first direction; a first dummy gate and a second dummy gate stretching along a second direction; Plural fin structures stretching along the first direction; A gate structure disposed on the fin structures and stretching along the second direction; Two long contact plugs disposed at one side of the gate structure; two short contact plugs disposed at the other side of the gate structure; a gate contact plug disposed on the gate structure; Plural via plugs disposed on the long contact plugs, the short contact plugs and the gate contact plugs; A metal layer includes the first metal line, the second metal line, a third metal line and a fourth metal line. The present invention provides an integrated circuit with a standard cell of an inverter. The integrated circuit includes: a first metal line and a second metal line stretching along a first direction; a first dummy gate and a second dummy gate stretching along a second ...more ...less
6
US10269652B2
Publication/Patent Number: US10269652B2
Publication date: 2019-04-23
Application number: 15/466,519
Filing date: 2017-03-22
Abstract: An nFET vertical transistor is provided in which a p-doped top source/drain structure is formed in contact with an n-doped semiconductor region that is present on a topmost surface of a vertical nFET channel. The p-doped top source/drain structure is formed utilizing a low temperature (550° C. or less) epitaxial growth process. An nFET vertical transistor is provided in which a p-doped top source/drain structure is formed in contact with an n-doped semiconductor region that is present on a topmost surface of a vertical nFET channel. The p-doped top source/drain structure is formed utilizing a low ...more ...less
7
US10205000B2
Publication/Patent Number: US10205000B2
Publication date: 2019-02-12
Application number: 14/981,980
Filing date: 2015-12-29
Abstract: A device and a method for forming a device are disclosed. The method includes providing a substrate prepared with a device region. A device well having second polarity type dopants is formed in the substrate. A threshold voltage (VT) implant is performed with a desired level of second polarity type dopants into the substrate. The VT implant forms a VT adjust region to obtain a desired VT of a transistor. A co-implantation with diffusion suppression material is performed to form a diffusion suppression (DS) region in the substrate. The DS region reduces or prevents segregation and out-diffusion of the VT implanted second polarity type dopants. A transistor of a first polarity type having a gate is formed in the device region. First and second diffusion regions are formed adjacent to sidewalls of the gate. A device and a method for forming a device are disclosed. The method includes providing a substrate prepared with a device region. A device well having second polarity type dopants is formed in the substrate. A threshold voltage (VT) implant is performed with a desired level of ...more ...less
8
US10192866B2
Publication/Patent Number: US10192866B2
Publication date: 2019-01-29
Application number: 15/605,318
Filing date: 2017-05-25
Abstract: A manufacturing method of a semiconductor device according to a disclosed embodiment includes: implanting a first impurity into a first region of a semiconductor substrate, forming a semiconductor layer on the semiconductor substrate, forming a trench in the semiconductor layer and the semiconductor substrate, forming an isolation insulating film in the trench, implanting a second impurity into a second region of the semiconductor layer, forming a first gate insulating film and a first gate electrode in the first region, forming a second gate insulating film and a second gate electrode in the second region, forming a first source region and a first drain region at both sides of the first gate electrode, and forming a second source region and a second drain region at both sides of the second gate electrode. A manufacturing method of a semiconductor device according to a disclosed embodiment includes: implanting a first impurity into a first region of a semiconductor substrate, forming a semiconductor layer on the semiconductor substrate, forming a trench in the semiconductor layer ...more ...less
9
US10256301B1
Publication/Patent Number: US10256301B1
Publication date: 2019-04-09
Application number: 15/873,469
Filing date: 2018-01-17
Inventor: Reznicek, Alexander  
Abstract: A semiconductor device includes a plurality of stacked structures spaced apart from each other on a substrate, wherein the plurality of stacked structures each comprise a plurality of gate layers and a plurality of channel layers, a plurality of arsenic implanted regions on portions of a surface of the substrate adjacent the plurality of stacked structures, and a plurality of epitaxial source/drain regions extending from the plurality of stacked structures, wherein the plurality of epitaxial source/drain regions are spaced apart from the plurality of arsenic implanted regions. A semiconductor device includes a plurality of stacked structures spaced apart from each other on a substrate, wherein the plurality of stacked structures each comprise a plurality of gate layers and a plurality of channel layers, a plurality of arsenic implanted regions on ...more ...less
10
US10374035B2
Publication/Patent Number: US10374035B2
Publication date: 2019-08-06
Application number: 15/642,690
Filing date: 2017-07-06
Abstract: Techniques for dielectric isolation in bulk nanosheet devices are provided. In one aspect, a method of forming a nanosheet device structure with dielectric isolation includes the steps of: optionally implanting at least one dopant into a top portion of a bulk semiconductor wafer, wherein the at least one dopant is configured to increase an oxidation rate of the top portion of the bulk semiconductor wafer; forming a plurality of nanosheets as a stack on the bulk semiconductor wafer; patterning the nanosheets to form one or more nanowire stacks and one or more trenches between the nanowire stacks; forming spacers covering sidewalls of the nanowire stacks; and oxidizing the top portion of the bulk semiconductor wafer through the trenches, wherein the oxidizing step forms a dielectric isolation region in the top portion of the bulk semiconductor wafer. A nanowire FET and method for formation thereof are also provided. Techniques for dielectric isolation in bulk nanosheet devices are provided. In one aspect, a method of forming a nanosheet device structure with dielectric isolation includes the steps of: optionally implanting at least one dopant into a top portion of a bulk semiconductor ...more ...less
11
US10361296B2
Publication/Patent Number: US10361296B2
Publication date: 2019-07-23
Application number: 15/636,712
Filing date: 2017-06-29
Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs. Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include ...more ...less
12
US10361275B2
Publication/Patent Number: US10361275B2
Publication date: 2019-07-23
Application number: 15/456,421
Filing date: 2017-03-10