Country
Full text data for US and EP
Status
Type
Filing Date
Publication Date
Inventor
Assignee
Click to expand
IPC
No.
Publication Number
Title
Publication/Patent Number Publication/Patent Number
Publication date Publication date
Application number Application number
Filing date Filing date
Inventor Inventor
Assignee Assignee
IPC IPC
1
US10194536B2
Publication/Patent Number: US10194536B2
Publication date: 2019-01-29
Application number: 15/704,291
Filing date: 2017-09-14
Abstract: A method of making an electronic device may include forming at least one circuit layer that includes solder pads on a substrate and forming at least one liquid crystal polymer (LCP) solder mask having mask openings therein. The method may also include forming at least one thin film resistor on the LCP solder mask and coupling the at least one LCP solder mask to the substrate so that the at least one thin film resistor is coupled to the at least one circuit layer and so that the solder pads are aligned with the mask openings. A method of making an electronic device may include forming at least one circuit layer that includes solder pads on a substrate and forming at least one liquid crystal polymer (LCP) solder mask having mask openings therein. The method may also include forming at least one thin ...more ...less
2
US10180550B2
Publication/Patent Number: US10180550B2
Publication date: 2019-01-15
Application number: 15/914,415
Filing date: 2018-03-07
Abstract: A method for producing a lateral connection of an electro-optical interface is specified. In the method, a printed circuit board having a non-curved center plane is provided. An electro-optical component and an electrical component are arranged and oriented with respect to one another in a connection region. A first section of the printed circuit board is deformed in such a way that the center plane encloses an angle with the non-deformed layer in the region of the first section. An electro-optical interface and a control device are also specified. A method for producing a lateral connection of an electro-optical interface is specified. In the method, a printed circuit board having a non-curved center plane is provided. An electro-optical component and an electrical component are arranged and oriented with respect to one ...more ...less
3
US10177102B2
Publication/Patent Number: US10177102B2
Publication date: 2019-01-08
Application number: 15/831,554
Filing date: 2017-12-05
Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass. Further, the electronic package may include an enclosure, and the glass substrate may be located within the secure volume separate from the enclosure, or alternatively, the enclosure may be a stressed glass enclosure, an inner surface of which is the glass substrate for the electronic component(s). Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure ...more ...less
4
US10220202B2
Publication/Patent Number: US10220202B2
Publication date: 2019-03-05
Application number: 15/585,093
Filing date: 2017-05-02
Abstract: A flexible circuit electrode array with more than one layer of metal traces comprising: a polymer base layer; more than one layer of metal traces, separated by polymer layers, deposited on the polymer base layer, including electrodes suitable to stimulate neural tissue; and a polymer top layer deposited on the polymer base layer and the metal traces. Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. A flexible circuit electrode array with more than one layer of metal traces comprising: a polymer base layer; more than one layer of metal traces, separated by polymer layers, deposited on the polymer base layer, including electrodes suitable to stimulate neural tissue; and a ...more ...less
5
US10206277B2
Publication/Patent Number: US10206277B2
Publication date: 2019-02-12
Application number: 14/975,162
Filing date: 2015-12-18
Abstract: In accordance with disclosed embodiments, there are provided methods, systems, and apparatuses for gradient encapsulant protection of devices in stretchable electronic. For instance, in accordance with one embodiment, there is an apparatus with an electrical device on a stretchable substrate; one or more stretchable electrical interconnects coupled with the electrical device; one or more electrical components electrically coupled with the electrical device via the one or more stretchable electrical interconnects; and a gradient encapsulating material layered over and fully surrounding the electrical device and at least a portion of the one or more stretchable electrical interconnects coupled thereto, in which the gradient encapsulating material has an elastic modulus greater than the stretchable substrate and in which the elastic modulus of the gradient encapsulating material is less than the electrical device. Other related embodiments are disclosed. In accordance with disclosed embodiments, there are provided methods, systems, and apparatuses for gradient encapsulant protection of devices in stretchable electronic. For instance, in accordance with one embodiment, there is an apparatus with an electrical device on a ...more ...less
6
US10217386B2
Publication/Patent Number: US10217386B2
Publication date: 2019-02-26
Application number: 15/710,565
Filing date: 2017-09-20
Abstract: A thin light-transmitting substrate showing high thermal conduction efficiency, and having a function of raising surface temperature thereof is provided. The light-transmitting substrate of the present invention comprises a substrate that transmits at least a light of a predetermined wavelength, and a conductor pattern that is disposed on the substrate, and generates heat to raise temperature of the surface of the substrate when it is supplied with an electric current. The conductor pattern is directly disposed on the substrate without any adhesive layer. A thin light-transmitting substrate showing high thermal conduction efficiency, and having a function of raising surface temperature thereof is provided. The light-transmitting substrate of the present invention comprises a substrate that transmits at least a light of a ...more ...less
7
US10228485B2
Publication/Patent Number: US10228485B2
Publication date: 2019-03-12
Application number: 15/392,604
Filing date: 2016-12-28
Abstract: A downhole tool includes a housing a measurement device disposed in the housing. The measurement device includes a sensor and electronic circuitry configured to detect or process signals detected by the sensor. The housing, the sensor, or the electronic circuitry, or any combination thereof, includes a polymer matrix with integrated boron nitride nanotubes. A downhole tool includes a housing a measurement device disposed in the housing. The measurement device includes a sensor and electronic circuitry configured to detect or process signals detected by the sensor. The housing, the sensor, or the electronic circuitry, or any ...more ...less
8
US10280260B2
Publication/Patent Number: US10280260B2
Publication date: 2019-05-07
Application number: 15/224,773
Filing date: 2016-08-01
Abstract: The present invention relates to a phosphorus-containing polyphenylene oxide resin, its preparation method, a method for preparing the prepolymer of the phosphorus-containing polyphenylene oxide, a resin composition and an article thereof, wherein the phosphorus-containing polyphenylene oxide resin has a chemical structure represented by the following formula (I): wherein R′ is R″ is R′″ is hydrogen, Through the use of the above phosphorus-containing polyphenylene oxide resin, an article made from the resin composition can has good flame retardance, good thermal resistance and a lower percent of thermal expansion while dielectric properties can be maintained, such that the present invention is suitable for use in products such as copper clad laminate and printed circuit board. The present invention relates to a phosphorus-containing polyphenylene oxide resin, its preparation method, a method for preparing the prepolymer of the phosphorus-containing polyphenylene oxide, a resin composition and an article thereof, wherein the phosphorus-containing ...more ...less
9
US10280289B2
Publication/Patent Number: US10280289B2
Publication date: 2019-05-07
Application number: 15/307,639
Filing date: 2015-04-16
Abstract: An epoxy resin composition according to one embodiment of the present invention comprises an epoxy resin, a curing agent, and an inorganic filler, and the inorganic filler includes boron nitride on which a metal oxide film is formed.
10
US10283347B2
Publication/Patent Number: US10283347B2
Publication date: 2019-05-07
Application number: 15/668,419
Filing date: 2017-08-03
Abstract: A display device including a first film, a flexible printed circuit, and a second film. The first film includes a substrate and a non-adhesive pattern, where the substrate includes a first area and a second area adjacent to the first area, and the non-adhesive pattern is formed on at least a portion of the second area. The flexible printed circuit is disposed on the first area of the first film. The second film is disposed on the flexible printed circuit and the first film. A display device including a first film, a flexible printed circuit, and a second film. The first film includes a substrate and a non-adhesive pattern, where the substrate includes a first area and a second area adjacent to the first area, and the non-adhesive pattern is formed ...more ...less
11
US10291236B2
Publication/Patent Number: US10291236B2
Publication date: 2019-05-14
Application number: 15/342,554
Filing date: 2016-11-03
Abstract: An oven controlled crystal oscillator consisting of heater-embedded ceramic package includes a substrate, a crystal package, a crystal blank, a metal lid, a first IC chip, and a cover lid. The crystal package is mounted on the substrate, and a central bottom of the crystal package is provided with the first IC chip. The crystal blank is mounted in the crystal package and sealed by the metal lid. The crystal package has an embedded heater layer establishing a symmetric thermal field with respect to the first IC chip and the crystal blank. Alternatively, a heater-embedded ceramic carrier substrate is arranged between the first IC chip and the crystal blank to establish a symmetric thermal field with respect to the first IC chip and the crystal blank. The cover lid is combined with the substrate to cover the crystal package and the metal lid. An oven controlled crystal oscillator consisting of heater-embedded ceramic package includes a substrate, a crystal package, a crystal blank, a metal lid, a first IC chip, and a cover lid. The crystal package is mounted on the substrate, and a central bottom of the crystal ...more ...less
12
US10292264B2
Publication/Patent Number: US10292264B2
Publication date: 2019-05-14
Application number: 15/951,808
Filing date: 2018-04-12
Abstract: Provided are an insulating ceramic paste, a ceramic electronic component, and a method for producing the ceramic electronic component that allow prevention of solder shorts between narrow-pitch terminal electrodes and suppression of generation of cracks in an insulator covering a portion of terminal electrodes during a firing step. The ceramic electronic component includes a ceramic multilayer substrate, terminal electrodes formed on a surface of the ceramic multilayer substrate, and an insulating ceramic film formed on the surface of the ceramic multilayer substrate so as to cover a portion of the terminal electrodes. An exposed surface portion (celsian-crystal-rich layer) of the insulating ceramic film has a thermal expansion coefficient that is lower than the thermal expansion coefficient of the ceramic multilayer substrate. Provided are an insulating ceramic paste, a ceramic electronic component, and a method for producing the ceramic electronic component that allow prevention of solder shorts between narrow-pitch terminal electrodes and suppression of generation of cracks in an insulator covering ...more ...less
13
US10251264B2
Publication/Patent Number: US10251264B2
Publication date: 2019-04-02
Application number: 15/655,286
Filing date: 2017-07-20
Abstract: A membrane circuit structure with function expandability is provided. The membrane circuit structure includes a substrate, a lower circuit layer and a covering layer. The substrate includes a first region and at least one second region. The at least one second region is arranged near the first region. The lower circuit layer is printed on the first region. The lower circuit layer is made of a first conductive material. The covering layer is electroplated on a portion of a surface of the lower circuit layer. The covering layer is made of a second conductive material. At least one expansion line is welded on the corresponding second region, and electrically connected with the covering layer and a corresponding function-expanding unit. A membrane circuit structure with function expandability is provided. The membrane circuit structure includes a substrate, a lower circuit layer and a covering layer. The substrate includes a first region and at least one second region. The at least one second region is arranged ...more ...less
14
US10251269B2
Publication/Patent Number: US10251269B2
Publication date: 2019-04-02
Application number: 14/412,195
Filing date: 2013-12-27
Abstract: A wiring board includes a ceramic insulating base; a recessed portion provided on a side surface of the insulating base, the recessed portion being connected to one main surface of the insulating base; an internal wiring conductor disposed in an interior of the insulating base; an external wiring conductor disposed on one main surface of the insulating base; a recessed portion wiring conductor disposed in the recessed portion, the recessed portion wiring conductor being connected to the internal wiring conductor and the external wiring conductor; and a through conductor disposed in an interior of the insulating base, the through conductor electrically connecting the internal wiring conductor and the external wiring conductor. In a see-through plan view of the insulating base from a one main surface side, the recessed portion extends in one direction, and the through conductor is disposed in a periphery of an end portion of the recessed portion. A wiring board includes a ceramic insulating base; a recessed portion provided on a side surface of the insulating base, the recessed portion being connected to one main surface of the insulating base; an internal wiring conductor disposed in an interior of the insulating base; ...more ...less
15
US10285268B2
Publication/Patent Number: US10285268B2
Publication date: 2019-05-07
Application number: 15/606,102
Filing date: 2017-05-26
Inventor: Park, Gi Gon  
Abstract: A printed circuit board (PCB) includes: a substrate; and a circuit pattern disposed on the substrate, wherein the circuit pattern includes a first seed layer disposed on the substrate and including a nitride, and a metal layer disposed on the first seed layer.
16
US10234975B2
Publication/Patent Number: US10234975B2
Publication date: 2019-03-19
Application number: 15/692,642
Filing date: 2017-08-31
Inventor: Zhai, Yingteng  
Abstract: A flexible display device, a flexible display device fabrication method and an electronic device are provided. The flexible display device comprises a flexible display panel having a first surface for displaying images; a flexible insulating layer disposed on the first surface of the flexible display panel and divided into a plurality of flexible insulating blocks; and a touch control unit disposed on the flexible insulating layer and comprising a first touch control electrode layer in direct contact with the flexible insulating layer. The first touch control electrode layer includes a plurality of first touch control electrodes. Any one of the plurality of flexible insulating blocks corresponds to at least one of the plurality of first touch control electrodes. In a direction perpendicular to the flexible display panel, a gap between any two adjacent flexible insulating blocks overlaps with a gap between two adjacent first touch control electrodes. A flexible display device, a flexible display device fabrication method and an electronic device are provided. The flexible display device comprises a flexible display panel having a first surface for displaying images; a flexible insulating layer disposed on the first surface ...more ...less